Содержание
Что такое теория струн? Простой обзор
Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Каждый колебательный паттерн соответствует разным частицам. Электрон — это не что иное, как струна, вибрирующая по одному шаблону, а протон — это струна, вибрирующая по другому шаблону. Это просто математическая концепция, нет никаких экспериментальных доказательств теории струн.
В природе существуют четыре фундаментальные силы: гравитация, электромагнетизм и слабые и сильные ядерные силы. Одна из главных целей физиков — разработать теорию, которая может описать все эти силы.
За последние 6 десятилетий, пытаясь объединить все силы, физики-теоретики выдвинули много разных интересных идей и новых теорий. Одна из самых многообещающих из этих теорий — теория струн.
Теория струн в настоящее время стала самой противоречивой концепцией в физике, целью которой является объединение двух столпов физики 20-го века: теории относительности Эйнштейна и квантовой механики. Проще говоря, это всеобъемлющая структура, которая может объяснить всю физическую реальность (если она доказана).
Основная идея теории струн
Выбери что-нибудь вокруг себя. Допустим, вы взяли яблоко со стола. Из чего сделано яблоко? Ну, чтобы ответить на этот вопрос, вам нужно заглянуть в него.
Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы. Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы.
Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц (скажем, нейтрон) и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками.
Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще.
Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту.
Иллюстрация струны
Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам.
Следовательно, кварк — это не что иное, как струна, вибрирующая по одной схеме, а электрон — это не что иное, как струна, вибрирующая по другой схеме. Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах.
Если теория струн верна (она все еще не доказана), все вещи во вселенной — не что иное, как танцующая вибрирующая космическая симфония струн.
5 основных элементов теории струн
1. Дополнительное измерение
На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы.
Теория струн требует от нас принять существование дополнительного измерения во вселенной. В настоящее время мы живем в трех пространственных измерениях, но теория струн требует более шести высоких измерений в дополнение к четырем общим измерениям (3D + время), чтобы иметь смысл.
2. Суперсимметрия
Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот.
Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения.
Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн.
Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн.
3. Объединение сил
Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц.
Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн.
4. Открытые и закрытые струны
5 фундаментальных взаимодействий струны типа I
Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну.
Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов.
Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике.
Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка. Это масштаб, при котором эффекты квантовой гравитации становятся значительными.
5. М-Теория
Связь между M-теорией, теориями суперструн и 11D супергравитацией | Wikimedia
Со временем ученые придумали пять различных версий теории суперструн: Тип I, Тип IIA, Тип IIIB и две версии теории гетеротических струн.
Однако в 1995 году американский физик-теоретик Эдвард Виттен объединил все пять теорий в одну 11-мерную теорию, называемую М-теорией. Это может обеспечить основу для построения единой теории всех фундаментальных сил во Вселенной.
Кто открыл теорию струн?
Теория струн взята из теории S-матриц, исследовательской программы, начатой Вернером Гейзенбергом в 1943 году. Целью этой программы было заменить локальную квантовую теорию поля как основной принцип физики элементарных частиц.
Ускорители частиц 1950-х и 60-х годов в изобилии производили адроны. Физики изобрели множество различных моделей для описания структуры спинов и масс этих сильно взаимодействующих частиц (состоящих из кварков).
Итальянский физик-теоретик Габриэле Венециано сыграл главную роль в разработке этих ранних моделей. Он сформулировал основы теории струн в 1968 году, когда обнаружил, что крошечные струны могут описывать взаимодействия адронов.
Он также опубликовал статью в 1991 году, в которой описывается, как инфляционная космологическая модель может быть получена из теории струн.
Сегодня, благодаря совместным усилиям многих исследователей, теория струн превратилась в широкую и разнообразную тему, связанную с чистой математикой, космологией, физикой конденсированного состояния и квантовой гравитацией.
Является ли теория струн теорией всего?
Ну, быстрый ответ — нет.
Теория Всего — это гипотетическая основа физики, которая полностью описывает и связывает воедино все физические аспекты вселенной. Найти такую теорию — главная мечта физиков-теоретиков.
Для достижения этой цели теория струн стала многообещающим кандидатом в Теорию Всего. До сих пор он успешно объяснил многие сложные явления, в том числе черные дыры , которые требуют как квантовой механики, так и общей теории относительности для их изучения.
Согласно теории струн, все четыре фундаментальные силы когда-то были единой фундаментальной силой в начале вселенной — через 10–43 секунды после Большого взрыва.
Это также дало новые идеи в отношении кварк-глюонной плазмы и дал много результатов, некоторые из которых могут показаться непонятными или абсурдными. Например, теория струн допускает около 10500 вселенных или обширную мультивселенную. Это одна из причин, она столкнулась с многочисленными неудачами в прошлом.
Почему теория струн важна?
Хотя теория струн до сих пор не дала каких-либо проверяемых экспериментальных предсказаний, математика в теории струн сработала. И именно поэтому это чрезвычайно полезно.
За последние несколько десятилетий теория струн предложила несколько убедительных и достоверных решений.
В нем есть
- вдохновил всю область исследований суперсимметрии,
- помог нам понять энтропию черной дыры,
- вдохновили новые подходы к традиционным вычислениям в квантовой теории поля.
Исследователи также установили связь между рамками квантовой теории поля и теории струн, которая называется AdS / CFT-соответствием.
Так что, может быть, история теории струн — это не теория всего, но, конечно, это не отдельная совокупность исследований, проводимых в каком-то неясном уголке науки. Вместо этого он может указать нам правильное направление и помочь нам открыть новые аспекты квантового мира и немного прекрасной математики.
Мы еще не знаем, какова истинная природа реальности, но мы будем продолжать копать, пока не узнаем.
На пути к теории струн / Хабр
Эта статья является второй частью конспекта книги «Скрытая реальность: Параллельные миры и глубинные законы Космоса».
Современная космология, от Большого взрыва до инфляции, ведет свое начало из общей теории относительности Эйнштейна. В новой теории гравитации Эйнштейн отбросил общепринятое представление о жестком и неизменном пространстве и времени; перед наукой предстал динамический космос. С накопленным к 1920-м годам математическим арсеналом и геометрической интуицией он приступил к развитию единой теории поля.
Под единой теорией поля Эйнштейн подразумевал некую схему, которая позволит включить все силы природы в единую и самосогласованную математическую модель. Но десятилетия напряжённой работы Эйнштейна в направлении объединения не оказали в то время значительного влияния — цель была великой, но для неё не пришло ещё время. Позднее другие исследователи подхватили идею единой теории. Наиболее успешная схема объединения получила название теория струн.
Краткая история объединения
Когда Эйнштейн размышлял об объединении, науке были известны две силы: гравитация, описываемая его собственными уравнениями, и электромагнетизм, описываемый уравнениями Максвелла. Эйнштейн предполагал объединить две теории в единую математическую конструкцию, которая сочленила бы действие всех сил в природе.
Цель была весьма амбициозна, и Эйнштейн отнёсся к ней очень серьёзно. У него была уникальная способность полностью отдаваться задаче, которую он перед собой поставил, и последние тридцать лет своей жизни он полностью посвятил проблеме объединения. Однако его последние вычисления не пролили больше света на вопрос объединения.
После смерти Эйнштейна работа над единой теорией практически прекратилась. Многие физики переключились на изучение микромира, руководствуясь квантовой механикой. При этом делались успехи в раскрытии тайны атома и использовании его скрытой мощи.
В дальнейшем были экспериментально обнаружены другие взаимодействия: сильное ядерное и слабое ядерное. И теперь единая теория должна объединять не две силы, а четыре. Мечта Эйнштейна стала еще более призрачной.
В конце 1960-х и в начале 1970-х годов пошла обратная волна. Физики осознали, что методы квантовой теории поля, успешно применённые в электромагнетизме, также хорошо описывают слабое и сильное ядерные взаимодействия. Таким образом, все три негравитационные силы описываются на одном математическом языке. Более того, при подробном исследовании этих квантовых теорий поля обнаружились взаимосвязи, указывающие на возможное единство электромагнитных, слабых и сильных взаимодействий .
Давайте рассмотрим этот вопрос подробнее. Глэшоу, Салам и Вайнберг предположили, что электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия. Электрослабая теория была подтверждена в экспериментах на ускорителе в конце 1970-х и начале 1980-х годов. Глэшоу и Джорджи пошли дальше и предложили, что электрослабое и сильное взаимодействия являются проявлениями ещё более фундаментального взаимодействия, в рамках подхода, который был назван великим объединением. Однако простейшая версия великого объединения была отброшена, когда учёным не удалось экспериментально подтвердить одно из предсказаний — что протоны должны время от времени распадаться. Тем не менее есть много других вариантов великого объединения, которые пока экспериментально не отвергнуты, например, потому, что предсказываемая ими скорость распада протона настолько мала, что чувствительность современного экспериментального оборудования недостаточна для обнаружения распада. Однако даже если великое объединение не подкрепляется экспериментальными данными, уже нет никаких сомнений, что три негравитационных взаимодействия могут быть описаны на едином математическом языке квантовой теории поля.
Всё это являлось впечатляющим продвижением к единой теории, однако на таком обнадёживающем фоне возникла досадная проблема. Когда учёные применили методы квантовой теории к четвёртой силе в природе — гравитации, оказалось, что математика просто не работает. Как бы успешно ни работали общая теория относительности и квантовая механика на своих естественных масштабах, на больших и малых расстояниях, бессмысленный результат, полученный при попытке их объединения, означал глубокую трещину в понимании законов природы.
В середине 1980-х годов произошёл следующей ключевой скачок. Новая теория, теория суперструн, завладела умами физиков по всему миру. Она смягчила разногласия между общей теорией относительности и квантовой механикой и дала надежду, что гравитация может быть встроена в объединённый квантово-механический каркас. Была развита впечатляющая и изощрённая математическая структура, но многое в теории суперструн оставалось неясным.
Открытие теории суперструн дало толчок к развитию других, тесно связанных теоретических подходов, направленных на поиски единой теории фундаментальных взаимодействий. В частности, суперсимметричная квантовая теория поля и её гравитационное расширение (супергравитация) глубоко изучались в середине 1970-х годов. Суперсимметричная квантовая теория поля и супергравитация основаны на новом принципе суперсимметрии, который был открыт в рамках теории суперструн, но эти подходы подключают суперсимметрию к обычным теориям точечных частиц.
Позже начиная с середины 1990-х годов, попытки теоретиков распутать эти загадки неожиданно привели теорию струн к сюжету с мультивселенными. Учёным давно было известно, что математические методы, применяемые при анализе теории струн, используют множество приближений, а потому их можно усовершенствовать. Когда была сделана часть уточнений, учёные осознали, что соответствующий математический аппарат ясно указывает, что наша Вселенная является, возможно, частью некоторой мультивселенной.
Квантовые поля
Начнем с рассмотрения традиционной квантовой теории поля.
В классической физике поля описываются как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. В квантовой механике понятия поля приводит к квантовой теории поля. Квантовая неопределенность заставляет значение поля в каждой точке случайно колебаться. Подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц – кванты поля. Но как бы не представлять частицы в рамках квантовой теории поля они математически описываются как крохотные точки, не имеющие пространственного размера и внутренней структуры.
Осведомлённый читатель может не согласиться с утверждением, что каждое поле ассоциируется с частицей. Более точное утверждение звучит так: малые флуктуации поля около локального минимума его потенциала обычно интерпретируются как возбуждения частиц. Этого определения будет достаточно для наших обсуждений. К тому же осведомлённый читатель заметит, что локализация частицы в точке сама по себе является идеализацией, потому что для этого потребуется — из принципа неопределённости — бесконечный импульс и энергия. Опять же суть в том, что в квантовой теории поля нет, в принципе, предела того, как можно локализовать частицу.
Вера физиков в квантовую теорию поля обусловлена одним существенным фактором: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью. После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. В результате упорного труда многих из физиков к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля.
Однако многие из физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать. Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнутся друг от друга — как правило, приводит к ответу бесконечность. Но вероятности бесконечными быть не могут. По определению значение вероятности должно находиться между 0 и 1 (между 0 и 100, если считать в процентах). Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно.
Физики выяснили, что проблема кроется в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.
В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва, или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать.
Насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10-99 кубического сантиметра (грубо говоря, это сфера с радиусом 10-33 сантиметра с так называемой планковской длиной). Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё.
Однако в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн.
Теория струн
Хотя теория струн имеет репутацию сложной теории, её основная идея очень простая. Стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля. Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого, предлагается рассматривать их как крошечные, струноподобные вибрирующие нити.
При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы, но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн, это означает, что струна электрона вибрирует менее энергично, чем струна кварка. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот.
По причине бесконечно малого размера струны, порядка планковской длины — 10-33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны. БАК, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10-19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц. Тем не менее, согласно теории струн, частицы являются струнами. В этом, в двух словах, и заключается теория струн.
Струны, точки и квантовая гравитация
Следует подчеркнуть три особо важных момента.
Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию. Этот выбор диктуется экспериментальными ограничениями, а также теоретическими предпосылками. Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать большое количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля. Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов. Впечатляющее свойство теории струн состоит в том, что частицы определяются самой теорией: разные типы частиц соответствуют разному вибрационному поведению струны. Тогда потенциал и перспективы теории струн заключаются в том, чтобы превзойти квантовую теорию поля путём получения всех свойств частиц математически. Теория струн строится непоследовательными приближениями к полному описанию природы. Она предлагает полное описание с самого начала.
Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля. Исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю. Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантовомеханическим свойством, известным как спин-2.
В-третьих, как бы ни была радикальна теория струн, она идёт по протоптанному пути, известному в истории физики. Специальная теория относительности расширяет наше понимание мира высоких скоростей; общая теория относительности идёт дальше и учитывает большие массы; квантовая механика и квантовая теория поля вводят нас в мир малых расстояний. Понятия, привлекаемые этими теориями, и предсказываемые ими свойства непохожи ни на что известное ранее. Более того, если применять эти теории в привычных рамках доступных нам скоростей, размеров и масс, они сведутся к описаниям, открытым до XX столетия — к классической механике Ньютона и классическим полям Фарадея, Максвелла и других.
Теория струн могла бы претендовать на существенный отрыв от своих предшественников и отступить от нарисованной схемы ниже. Замечательно, что этого не происходит. Теория струн достаточно революционна для преодоления барьеров физики двадцатого столетия. При этом она достаточно консервативна, чтобы прошедшие три столетия открытий смогли уютно разместиться в её математическом аппарате.
Пространственные измерения
В первые годы исследований по теории струн физики столкнулись с фатальными математическими изъянами, например, спонтанное возникновение или исчезновение энергии. В 1970-х многие думали, что от теории струн необходимо отказаться. Но некоторые исследователи упорно придерживались другой точки зрения.
В результате сложных исследований было выяснено, что проблемные свойства тесно связаны с числом пространственных измерений. В уравнениях теории струн нет изъянов во вселенной с девятью пространственными измерениями и одним временным, что в совокупности составляет десять измерений.
Автор книги подмечает, что без технических подробностей будет тяжело или даже невозможно (по крайней мере, для него) объяснить, как это происходит. Так что здесь он дает некую техническую наводку. В теории струн есть одно уравнение, в котором присутствует вклад вида (D — 10) умножить на (проблему), где D — это число пространственно-временных измерений, а проблема — это некое математическое выражение, приводящее к проблемному физическому явлению, подобному ранее упомянутому нарушению закона сохранения энергии. Автор не может предложить никакого интуитивного, нетехнического объяснения, почему уравнение имеет именно этот вид. Но в вычислениях возникает именно оно. Простое, но ключевое наблюдение состоит в том, что, если число измерений равно десяти, а не четырём, как можно было бы ожидать, вклад в уравнение становится 0 умножить на проблему. Поскольку умножение на ноль всегда даёт ноль, во вселенной с десятью пространственно-временными измерениями проблема исчезает. Именно поэтому физики, занимающиеся теорией струн, рассматривают вселенную, в которой более четырёх пространственно-временных измерений.
В начале XX столетия в нескольких статьях математика Калуцы и физика Клейна было высказано предположение о существовании измерений, легко ускользающих от обнаружения. Они предсказывали, что в отличие от привычных пространственных измерений, простирающихся на большие или даже бесконечные расстояния, могут существовать дополнительные измерения, настолько малые и скрученные, что их очень трудно увидеть. На рисунке поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее.
Из предложения Калуцы–Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость велика (может даже бесконечны). Однако если дополнительное пространственное измерение скручено и имеет чрезвычайно малый размер, то оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Так начиналась теория Калуцы–Клейна, гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений.
Если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался захватывающим. Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение. Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее.
Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием.
Однако последующие исследования показали, что программа Калуцы–Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались различные способы обойти эту проблему. Однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.
Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Теория струн возродила программу Калуцы–Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени, когда теория струн приведёт к полному описанию всей материи и взаимодействий.
Большие надежды
В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам.
Теория струн и свойства частиц
Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Интерес к этому вопросу непросто академический, он отражает очень важный факт. Если бы у частиц были другие свойства, ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой. Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле. Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными.
В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория.
Сможет ли теория струн справиться с этим лучше? Одна из самых красивых черт струнной теории состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений. Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби–Яу. Проблема в том, что нет какой-то одной, выделенной формы Калаби–Яу. Наоборот, эти пространства имеют разные размеры и контуры. Дополнительные измерения, различающиеся по размерам и по форме, порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.
В середине 1980-х годов, было известно небольшое количество пространств Калаби–Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Спустя несколько лет, число пространств Калаби–Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения. Время шло и число страниц в каталоге пространств Калаби–Яу только увеличивалось. Теперь их больше чем песчинок на пляже. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби–Яу то самое, единственное.
Теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля.
Теория струн и эксперименты
Если типичная струна имеет чрезвычайно крохотный размер, то для обнаружения её протяжённой структуры — той самой характеристики, которая отличает её от частицы — потребуется ускоритель в миллионы миллиардов раз мощнее, чем БАК. Предполагая, что выдающийся технологический прорыв не предвидится, такая ситуация означает, что на сравнительно малых энергиях, достижимых на имеющихся ускорителях, струны неотличимы от точечных частиц. Экспериментальная версия упомянутого ранее теоретического факта: на низких энергиях теория струн сводится к квантовой теории поля. Таким образом, даже если теория струн и является правильной фундаментальной теорией, в широком диапазоне доступных экспериментов она будет проявляться как квантовая теория поля.
Выбор полей и кривых энергий в квантовой теории поля равносилен выбору формы дополнительных измерений в теории струн. Одна из проблем в теории струн состоит в том, что математика, которая связывает свойства частиц с формой дополнительных измерений, в высшей степени своеобразна. Поэтому работа в обратном направлении очень трудна — использование экспериментальных данных для определения конкретной формы дополнительных измерений, аналогично тому, как такие данные определяют состав полей и кривых энергий в квантовой теории поля. В обозримом будущем наиболее обещающим способом связи теории струн с экспериментальными данными будут предсказания, которые можно объяснить с помощью более традиционных методов, но для которых гораздо более естественное и убедительное объяснение возникает из теории струн.
Теория струн, сингулярность и черные дыры
В большинстве ситуаций квантовая механика и гравитация успешно игнорируют друг друга, при этом первая применяется к малым объектам, таким как молекулы и атомы, а вторая к большим объектам, соразмерным звёздам и галактикам. Однако обе теории вынуждены встречаться в мирах, известных как сингулярности. Сингулярность — это любая физическая ситуация, реальная или гипотетическая, которая настолько экстремальна (огромные массы, малый размер, гигантская кривизна пространства, проколы или разрывы в самой пространственно-временной структуре), что квантовая механика и общая теория относительности ведут себя неадекватно.
Цель любой квантовой теории гравитации — свести воедино квантовую механику и гравитацию таким образом, чтобы сингулярности исчезли. Именно в этом направлении теория струн достигла своих самых впечатляющих успехов, уменьшив список сингулярностей.
В середине 1980-х годов группа исследователей пришла к выводу, что некоторые проколы в ткани пространства, которые доставляли много хлопот уравнениям Эйнштейна, прекрасно ведут себя в теории струн. Ключ к успеху состоял в том, что струна в отличие от точечной частицы не может свалиться в такой прокол. Поскольку струна — это протяжённый объект, она может удариться о прокол, может обмотаться вокруг него либо воткнуться в него, но подобного рода умеренные взаимодействия совершенно не портят уравнения теории струн. Это важно не потому, что такие изъяны в пространстве действительно имеют место — может, да, а может, и нет, — а потому, что именно таких свойств физики хотят от квантовой теории гравитации: способности работать осмысленно в ситуации, когда по отдельности отказывают как общая теория относительности, так и квантовая механика.
В 1990-х годах было установлено, что более сильные сингулярности (известные как флоп-сингулярности), возникающие при сжатии сферической области пространства до бесконечно малого размера, тоже описываются теорией струн. Интуиция подсказывает, что струна при движении может накрутиться на такую сжатую область пространства, подобно обручу на мыльный пузырь, создавая нечто вроде кругового ограждения. Вычисления показывают, что такой «струнный щит» сводит на нет любые потенциально разрушительные последствия и гарантирует, что уравнения теории струн остаются непротиворечивыми.
За прошедшие годы исследователи показали, что множество других, более сложных сингулярностей также полностью контролируются теорией струн.
Но остаётся проблема устранения с помощью теории струн сингулярностей чёрных дыр и Большого взрыва, более суровых, чем рассмотренные ранее.
Тем не менее одно важное открытие пролило свет на теорию чёрных дыр. В 1970-х годах в работах Бекенштейна и Хокинга было установлено, что чёрные дыры обладают определённой степенью беспорядка, известной как энтропия. Беспорядок внутри чёрной дыры, согласно фундаментальным физическим законам, свидетельствует о множестве вариантов случайного размещения её внутренностей. Однако даже после долгих усилий физикам не удалось достаточно хорошо разобраться в том, как устроены внутренности чёрных дыр, не говоря уж о том, чтобы проанализировать возможные способы их размещения. Однако смешав фундаментальные ингредиенты теории струн, они построили математическую модель беспорядка чёрной дыры, достаточно простую и понятную, чтобы извлечь из неё численное значение энтропии. Полученный результат в точности совпал с ответом Бекенштейна и Хокинга. Хотя осталось много открытых вопросов, эта работа стала первым надёжным квантово-механическим анализом беспорядка чёрной дыры. Замечательный прогресс в изучении сингулярности чёрной дыры и её энтропии привёл физическую общественность к обоснованной убеждённости, что со временем оставшиеся трудности, связанные с чёрными дырами и Большим взрывом, будут преодолены.
Оценивая текущий статус теории струн, многие струнные теоретики считают, что следующий важный шаг состоит в том, чтобы придать уравнениям теории наиболее полный и точный вид. Большая часть исследований на протяжении первых двух десятилетий развития теории до середины 1990-х годов была выполнена с помощью приближённых уравнений, ибо многие полагали, что так можно выявить общие свойства теории. Однако приближённые уравнения оказались слишком грубы, чтобы дать точные предсказания. Последние открытия вывели понимание на уровень, намного превосходящий тот, что был достигнут приближёнными методами.
Ссылки на все части
Инфляционная мультивселенная
На пути к теории струн
Вселенные по соседству в других измерениях
Черные дыры и голограммы
Теория струн Теория струн и суперструн
Привет, сегодня поговорим про теория струн, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое
теория струн, компактификация , настоятельно рекомендую прочитать все из категории Теория струн и суперструн.
теория струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяженных объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на ее основе, возможно, будет построена будущая теория квантовой гравитации.
Взаимодействие в микромире: диаграмма Фейнмана в стандартной модели и ее аналог в теории струн
Теория струн основана на гипотезе о том, что все элементарные частицы и ихфундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядкапланковской длины 10−35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени. Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано, связанных со струнными моделями строенияадронов. Середина 1980-х и середина 1990-х ознаменовались бурным развитием теории струн, ожидалось, что в ближайшее время на основе теории струн будет сформулирована так называемая «единая теория», или «теория всего», поискам которой Эйнштейн безуспешно посвятил десятилетия. Но, несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий.
Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби — Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби — Яу[10]. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием «проблема ландшафта»[11], в связи с чем некоторые ученые сомневаются, заслуживает ли теория струн статуса научной[12].
Несмотря на эти трудности, разработка теории струн стимулировала развитие математических формализмов, в основном — алгебраической и дифференциальной геометрии, топологии, а также позволила глубже понять структуру предшествующих ей теорий квантовой гравитации. Развитие теории струн продолжается, и есть надежда, что недостающие элементы струнных теорий и соответствующие феномены будут найдены в ближайшем будущем, в том числе в результате экспериментов на Большом адронном коллайдере[13].
Основные положения
Уровни строения мира:
1. Макроскопический уровень — вещество
2. Молекулярный уровень
3. Атомный уровень — протоны,нейтроны и электроны
4. Субатомный уровень — электрон
5. Субатомный уровень — кварки
6. Струнный уровень
Если бы существовал явный механизм экстраполяции струн в низкоэнергетическую физику, то теория струн представила бы нам все фундаментальные частицы и их взаимодействия в виде ограничений на спектры возбуждений нелокальныходномерных объектов. Характерные размеры компактифицированных струн чрезвычайно малы, порядка 10−33 см (порядка планковской длины)[14], поэтому они недоступны наблюдению в эксперименте. Аналогично колебаниям струн музыкальных инструментов спектральные составляющие струн возможны только для определенных частот (квантовых амплитуд). Чем больше частота, тем больше энергия, накопленная в таком колебании[15], и, в соответствии с формулой E=mc², тем большемасса частицы, в роли которой проявляет себя колеблющаяся струна в наблюдаемом мире. Параметром, аналогичным частоте для осциллятора, для струны является квадрат массы[16].
Непротиворечивые и самосогласованные квантовые теории струн возможны лишь в пространствах высшей размерности (больше четырех, учитывая размерность, связанную со временем). В связи с этим в струнной физике открыт вопрос о размерности пространства-времени[17]. То, что в макроскопическом (непосредственно наблюдаемом) мире дополнительные пространственные измерения не наблюдаются, объясняется в струнных теориях одним из двух возможных механизмов:
компактификация этих измерений — скручивание до размеров порядка планковской длины, или локализация всех частиц многомерной вселенной (мультивселенной) на четырехмерном мировом листе, который и являет собой наблюдаемую часть мультивселенной. Предполагается, что высшие размерности могут проявляться во взаимодействиях элементарных частиц при высоких энергиях, однако до сих пор экспериментальные указания на такие проявления отсутствуют.
При построении теории струн различают подход первичного и вторичного квантования. Последний оперирует понятием струнного поля − функционала на пространстве петель, подобно квантовой теории поля. В формализме первичного квантования математическими методами описывается движение пробной струны во внешних струнных полях, при этом не исключается взаимодействие между струнами, в том числе распад и объединение струн. Подход первичного квантования связывает теорию струн с обычной теорией поля на мировой поверхности.
Наиболее реалистичные теории струн в качестве обязательного элемента включают суперсимметрию, поэтому такие теории называются суперструнными[18]. Набор частиц и взаимодействий между ними, наблюдающийся при относительно низких энергиях, практически воспроизводит структуру стандартной модели в физике элементарных частиц, причем многие свойствастандартной модели получают изящное объяснение в рамках суперструнных теорий. Тем не менее до сих пор нет принципов, с помощью которых можно было бы объяснить те или иные ограничения струнных теорий, чтобы получить некое подобие стандартной модели[19].
В середине 1980-х годов Майкл Грин и Джон Шварц пришли к выводу, что суперсимметрия, являющаяся центральным звеном теории струн, может быть включена в нее не одним, а двумя способами: первый — это суперсимметрия мировой поверхности струны, второй — пространственно-временная суперсимметрия[20]. В своей основе данные способы введения суперсимметрии связывают методы конформной теории поля со стандартными методами квантовой теории поля[21][22]. Технические особенности реализации данных способов введения суперсимметрии обусловили возникновение пяти различных теорий суперструн — типа I, типов IIA и IIB, и двух гетеротических струнных теорий[23]. Возникший в результате этого всплеск интереса к теории струн был назван «первой суперструнной революцией». Все эти модели формулируются в 10-мерном пространстве-времени, однако различаются струнными спектрами и калибровочными группами симметрии. Заложенная в 1970-х и развитая в 1980-х годах конструкция 11-мерной супергравитации[24], а также необычные топологические двойственности фазовых переменных в теории струн в середине 1990-х привели ко «второй суперструнной революции». Выяснилось, что все эти теории, на самом деле, тесно связаны друг с другом благодаря определенным дуальностям[25]. Было высказано предположение, что все пять теорий являются различными предельными случаями единой фундаментальной теории, получившей название М-теории. В настоящее время ведутся поиски адекватного математического языка для формулировки этой теории[19].
История
Струны в адронной физике
Леонард Сасскинд
Струны как фундаментальные объекты были первоначально введены в физику элементарных частиц для объяснения особенностей строения адронов, в частности пионов.
В 1960-х годах была обнаружена зависимость между спином адрона и его массой (график Чу — Фраучи)[26][27]. Это наблюдение привело к созданию теории Редже, в которой разные адроны рассматривались не как элементарные частицы, а как различные проявления единого протяженного объекта — реджеона. В последующие годы усилиями Габриэле Венециано, Ёитиро Намбу,Холгера Бех Нильсена и Леонарда Сасскинда была выведена формула для рассеяния реджеонов и была дана струнная интерпретация протекающих при этом явлений.
В 1968 году Габриэле Венециано и Махико Судзуки при попытке анализа процесса столкновений пи-мезонов (пионов) обнаружили, что амплитуда парного рассеивания высокоэнергетических пионов весьма точно описывается одной из бета-функций, введенныхЛеонардом Эйлером в 1730 году. Позже было установлено, что амплитуда парного пионного рассеивания может быть разложена в бесконечный ряд, начало которого совпадает с формулой Венециано — Судзуки[28].
В 1970 году Ёитиро Намбу, Тэцуо Гото, Холгер Бех Нильсен и Леонард Сасскинд выдвинули идею, что взаимодействие между сталкивающимися пионами возникает вследствие того, что эти пионы соединяет «бесконечно тонкая колеблющаяся нить». Полагая, что эта «нить» подчиняется законам квантовой механики, они вывели формулу, совпадающую с формулой Венециано — Судзуки. Таким образом, появились модели, в которых элементарные частицы представляются в виде одномерныхструн, которые вибрируют на определенных нотах (частотах)[28].
С наступлением эры квантовой хромодинамики научное сообщество утратило интерес к теории струн в адронной физике вплоть до 80-х гг. XX в.
Бозонная теория струн
К 1974 году стало ясно, что струнные теории, основанные на формулах Венециано, реализуются в размерности пространства большей, чем 4: модель Венециано и модель Шапиро — Вирасоро (S-V) в размерности 26, а модель Рамо́на — Невье — Шварца (R-NS) в 10, и все они предсказывают тахионы[29]. Скорость тахионов превышает скорость света в вакууме, а потому их существование противоречит принципу причинности, который, в свою очередь нарушается в микромире. Таким образом, не имеется никаких убедительных (в первую очередь, экспериментальных) доказательств существования тахиона, равно как и логически неуязвимых опровержений[30]. На данный момент считается более предпочтительным не использовать идею тахионов при построении физических теорий. Решение проблемы тахионов основано на работах по пространственно-временной глобальной (не зависящей от координат) суперсимметрии Весса и Зумино (1974 год).[31]. В 1977 году Глиоцци, Шерк и Олив (GSO проекция) ввели в модель R-NS специальную проекцию для струнных переменных, которая позволила устранить тахион и по существу давала суперсимметричную струну[32]. В 1981 году Грину и Шварцу удалось описать GSO проекцию в терминах D-мерной суперсимметрии и чуть позже ввести принцип устранения аномалий в теориях струн[33].
В 1974 году Джон Шварц и Жоэль Шерк, а также независимо от них Тамиаки Ёнэя, изучая свойства некоторых струнных вибраций, обнаружили, что они в точности соответствуют свойствам гипотетической частицы − кванта гравитационного поля, которая называется гравитон[34]. Шварц и Шерк утверждали, что теория струн первоначально потерпела неудачу потому, что физики недооценили ее масштаб[19]. На основе данной модели была создана теория бозонных струн, которая по-прежнему остается первым вариантом теории струн, который преподают студентам[35]. Эта теория формулируется в терминах действия Полякова, с помощью которого можно предсказывать движение струны в пространстве и времени. Процедура квантования действия Полякова приводит к тому, что струна может вибрировать различными способами и каждый способ ее вибрации генерирует отдельную элементарную частицу. Масса частицы и характеристики ее взаимодействия определяются способом вибрации струны, или своеобразной «нотой», которая извлекается из струны. Получающаяся таким образом гамма называется спектром масс теории струн.
Первоначальные модели включали как открытые струны, то есть нити, имеющие два свободных конца, так и замкнутые, то есть петли. Эти два типа струн ведут себя по-разному и генерируют два различных спектра. Не все современные теории струн используют оба типа, некоторые обходятся только замкнутыми струнами.
Теория бозонных струн не лишена проблем. Прежде всего, теория обладает фундаментальной нестабильностью, которая предполагает распад самого пространства-времени. Кроме того, как следует из ее названия, спектр частиц ограничивается только бозонами. Несмотря на то, что бозоны представляют собой важный ингредиент мироздания, Вселенная состоит не только из них. Также она предсказывает несуществующую частицу с отрицательным квадратом массы — тахион[16]. Исследования того, каким образом можно включить в спектр теории струн фермионы, привело к понятию суперсимметрии — теории взаимосвязи бозонов и фермионов, которая теперь имеет самостоятельное значение. Теории, включающие в себя фермионные вибрации струн, называются суперструнными теориями[36].
Суперструнные революции
Эдвард Виттен, один из лидеров исследований М-теории
В 1984—1986 гг. физики поняли, что теория струн могла бы описать все элементарные частицы и взаимодействия между ними, и сотни ученых начали работу над теорией струн как наиболее перспективной идеей объединения физических теорий. Начало этойпервой суперструнной революции положило открытие в 1984 году Майклом Грином и Джоном Шварцем явления сокращения аномалий в теории струн типа I . Об этом говорит сайт https://intellect.icu . Механизм этого сокращения носит название механизма Грина — Шварца. Другие значительные открытия, например, открытие гетеротической струны, были сделаны в 1985 г.[19].
Хуан Малдасена вГарварде
В середине 1990-х Эдвард Виттен, Джозеф Полчински и другие физики обнаружили веские доказательства того, что различные суперструнные теории представляют собой различные предельные случаи не разработанной пока 11-мерной М-теории. Это открытие ознаменовало собой вторую суперструнную революцию. Последние исследования теории струн (точнее, М-теории) затрагивают D-браны, многомерные объекты, существование которых вытекает из включения в теорию открытых струн[19].
В 1997 году Хуан Малдасена обнаружил взаимосвязь между теорией струн и калибровочной теорией, которая называется N=4 суперсимметричная теория Янга — Миллса. Эта взаимосвязь, которая называется AdS/CFT-соответствием (сокращение терминов anti de Sitter space — пространство анти-де-Ситтера, и conformal field theory —конформная теория поля), привлекла большой интерес струнного сообщества и сейчас активно изучается[37]. AdS/CFT-соответствие является конкретной реализацией голографического принципа, который имеет далеко идущие следствия в отношении черных дыр, локальности и информации в физике, а также природы гравитационного взаимодействия.
В 2003 году открытие ландшафта теории струн, означающего существование в теории струн экспоненциально большого числа неэквивалентных ложных вакуумов[38][39][40], дало начало дискуссии о том, что в итоге может предсказать теория струн и каким образом может измениться струнная космология (подробнее см. ниже).
Основные свойства
Среди многих свойств теории струн особенно важны три нижеследующих:
- Гравитация и квантовая механика являются неотъемлемыми принципами устройства Вселенной, и поэтому любой проект единой теории обязан включать и то, и другое. В теории струн это реализуется.
- Исследования на протяжении XX века показали, что существуют и другие ключевые концепции, — многие из которых были проверены экспериментально, — являющиеся центральными для нашего понимания Вселенной. В их числе — спин, существование поколений частиц материи и частиц-переносчиков взаимодействия, калибровочная симметрия, принцип эквивалентности, нарушение симметрии[41] и суперсимметрия. Все это естественным образом вытекает из теории струн.
- В отличие от более общепринятых теорий, таких, как стандартная модель с ее 19 свободными параметрами, которые могут подгоняться для обеспечения согласия с экспериментом, в теории струн свободных параметров нет[19].
Классификация струнных теорий
Тип | Число измерений пространства-времени | Характеристика |
---|---|---|
Бозонная | 26 | Описывает только бозоны, нет фермионов; струны как открытые, так и замкнутые; основной недостаток: частица с мнимой массой, движущаяся со скоростью, большей скорости света, — тахион |
I | 10 | Включает суперсимметрию; струны как открытые, так и замкнутые; отсутствует тахион; групповая симметрия — SO(32) |
IIA | 10 | Включает суперсимметрию; струны только замкнутые; отсутствует тахион; безмассовые фермионы нехиральны |
IIB | 10 | Включает суперсимметрию; струны только замкнутые; отсутствует тахион; безмассовые фермионы хиральны |
HO | 10 | Включает суперсимметрию; струны только замкнутые; отсутствует тахион; теория гетеротическая: струны, колеблющиеся по часовой стрелке, отличаются от струн, колеблющихся против; групповая симметрия — SO(32) |
HE | 10 | Включает суперсимметрию; струны только замкнутые; отсутствует тахион; теория гетеротическая: струны, колеблющиеся по часовой стрелке, отличаются от струн, колеблющихся против; групповая симметрия — E8×E8 |
Несмотря на то, что понимание деталей суперструнных теорий требует серьезной математической подготовки, некоторые качественные свойства квантовых струн можно понять на интуитивном уровне. Так, квантовые струны, как и обычные струны, обладают упругостью, которая считается фундаментальным параметром теории. Упругость квантовой струны тесно связана с ее размером. Рассмотрим замкнутую струну, к которой не приложены никакие силы. Упругость струны будет стремиться стянуть ее в более мелкую петлю вплоть до размера точки. Однако это нарушило бы один из фундаментальных принципов квантовой механики — принцип неопределенности Гейзенберга. Характерный размер струнной петли получится в результате балансирования между силой упругости, сокращающей струну, и эффектом неопределенности, растягивающим струну.
Благодаря протяженности струны решается проблема ультрафиолетовых расходимостей в квантовой теории поля, и, следовательно, вся процедура регуляризации иперенормировки перестает быть математическим трюком и обретает физический смысл. Действительно, в квантовой теории поля бесконечные значения амплитуд взаимодействия возникают в результате того, что две частицы могут сколь угодно близко подойти друг к другу. В теории струн это уже невозможно: слишком близко расположенные струны сливаются в струну.
Дуальности
В середине 1980-х было установлено, что суперсимметрия, являющаяся центральным звеном теории струн[42], может быть включена в нее не одним, а пятью различными способами, что приводит к пяти различным теориям: типа I, типов IIA и IIB, и две гетеротические струнные теории. Можно предположить, что только одна из них могла претендовать на роль «теории всего», причем та, которая при низких энергиях и компактифицированных шести дополнительных измерениях согласовывалась бы с реальными наблюдениями. Оставались открытыми вопросы о том, какая именно теория более адекватна и что делать с остальными четырьмя теориями[19]С. 126.
В ходе второй суперструнной революции было показано, что такое представление неверно: все пять суперструнных теорий тесно связаны друг с другом, являясь различными предельными случаями единой 11-мерной фундаментальной теории (М-теория)[19][43].
Все пять суперструнных теорий связаны друг с другом преобразованиями, называемыми дуальностями[44]. Если две теории связаны между собой преобразованием дуальности (дуальным преобразованием), это означает, что каждое явление и качество из одной теории в каком-нибудь предельном случае имеет свой аналог в другой теории, а также имеется некий своеобразный «словарь» перевода из одной теории в другую[45].
То есть дуальности связывают и величины, которые считались различными или даже взаимоисключающими. Большие и малые масштабы, сильные и слабые константы связи — эти величины всегда считались совершенно четкими пределами поведения физических систем как в классической теории поля, так и в квантовой. Струны, тем не менее, могут устранять различия между большим и малым, сильным и слабым.
Т-дуальность
Т-дуальность
Т-дуальность связана с симметрией в теории струн, применимой к струнным теориям типа IIA и IIB и двум гетеротическим струнным теориям. Преобразования Т-дуальности действуют в пространствах, в которых по крайней мере одна область имеет топологию окружности. При таком преобразовании радиус R этой области меняется на 1/R, и «намотанные»[46] состояния струн меняются на высокоимпульсные струнные состояния в дуальной теории. Таким образом, меняя импульсные моды и винтовые моды струны, можно переключаться между крупным и мелким масштабом[47].
Другими словами связь теории типа IIA с теорией типа IIB означает, что их можно компактифицировать на окружность, а затем, поменяв винтовые и импульсные моды, а значит, и масштабы, можно увидеть, что теории поменялись местами. То же самое верно и для двух гетеротических теорий[48].
S-дуальность
S-дуальность (сильно-слабая дуальность) − эквивалентность двух квантовых теорий поля, теории струн и M-теории. Преобразование S-дуальности заменяет физические состояния и вакуум с константой связи[49]g одной теории на физические состояния и вакуум с константой связи 1 / g другой, дуальной первой теории. Благодаря этому оказывается возможным использовать теорию возмущений, которая справедлива для теорий с константой связи g много меньшей 1, по отношению к дуальным теориям с константой связи g много большей 1[48]. Суперструнные теории связаны S-дуальностью следующим образом: суперструнная теория типа I S-дуальна гетеротической SO(32) теории, а теория типа IIB S-дуальна самой себе.
U-дуальность
Существует также симметрия, связывающая преобразования S-дуальности и T-дуальности. Она называется U-дуальностью и наиболее часто встречается в контексте так называемых U-дуальных групп симметрии в М-теории, определенных на конкретных топологических пространствах. U-дуальность представляет собой объединение в этих пространствах S-дуальности и T-дуальности, которые, как можно показать на D-бране, не коммутируют друг с другом[50].
Дополнительные измерения
Интригующим предсказанием теории струн является многомерность Вселенной. Ни теория Максвелла, ни теории Эйнштейна не дают такого предсказания, поскольку предполагают число измерений заданным (в теории относительности их четыре). Первым, кто добавил пятое измерение к эйнштейновским четырем, оказался немецкий математик Теодор Калуца (1919 год)[51]. Обоснование ненаблюдаемости пятого измерения (его компактности) было предложено шведским физиком Оскаром Клейном в1926 году[52].
Требование согласованности теории струн с релятивистской инвариантностью (лоренц-инвариантностью) налагает жесткие требования на размерность пространства-времени, в котором она формулируется. Теория бозонных струн может быть построена только в 26-мерном пространстве-времени, а суперструнные теории — в 10-мерном[17].
Поскольку мы, согласно специальной теории относительности, существуем в четырехмерном пространстве-времени[53][54], необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории струн имеется два таких механизма.
Компактификация
Проекция 6-мерногопространства Калаби — Яу, полученная с помощьюMathematica
Первый из них заключается в компактификации дополнительных 6 или 7 измерений, то есть замыкание их на себя на таких малых расстояниях, что они не могут быть обнаружены в экспериментах. Шестимерное разложение моделей достигается с помощьюпространств Калаби — Яу.
Классическая аналогия, используемая при рассмотрении многомерного пространства, — садовый шланг[55]. Если наблюдать шланг с достаточно далекого расстояния, будет казаться, что он имеет только одно измерение — длину. Но если приблизиться к нему, обнаруживается его второе измерение — окружность. Истинное движение муравья, ползающего по поверхности шланга, двумерно, однако издалека оно нам будет казаться одномерным. Дополнительное измерение доступно наблюдению только с относительно близкого расстояния, поэтому и дополнительные измерения пространства Калаби — Яу доступны наблюдению только с чрезвычайно близкого расстояния, то есть практически не обнаруживаемы.
Пример компактификации : на больших расстояниях двумерная поверхность с одним круговым размером выглядит одномерным.
Локализация
Другой вариант — локализация — состоит в том, что дополнительные измерения не столь малы, однако в силу ряда причин все частицы нашего мира локализованы на четырехмерном листе в многомерной вселенной (мультивселенной) и не могут его покинуть. Этот четырехмерный лист (брана) и есть наблюдаемая часть мультивселенной. Поскольку мы, как и вся наша техника, состоим из обычных частиц, то мы в принципе неспособны взглянуть вовне.
Единственная возможность обнаружить присутствие дополнительных измерений — гравитация. Гравитация, будучи результатом искривления пространства-времени, не локализована на бране, и потому гравитоны и микроскопические черные дыры могут выходить вовне. В наблюдаемом мире такой процесс будет выглядеть как внезапное исчезновение энергии и импульса, уносимых этими объектами.
Проблемы
Возможность критического эксперимента
Теория струн нуждается в экспериментальной проверке, однако ни один из вариантов теории не дает однозначных предсказаний, которые можно было бы проверить вкритическом эксперименте. Таким образом, теория струн находится пока в «зачаточной стадии»: она обладает множеством привлекательных математических особенностей и может стать чрезвычайно важной в понимании устройства Вселенной, но требуется дальнейшая разработка для того, чтобы принять ее или отвергнуть. Поскольку теорию струн, скорее всего, нельзя будет проверить в обозримом будущем в силу технологических ограничений, некоторые ученые сомневаются, заслуживает ли данная теория статуса научной, поскольку, по их мнению, она не является фальсифицируемой в попперовском смысле[12][56].
Разумеется, это само по себе не является основанием считать теорию струн неверной. Часто новые теоретические конструкции проходят стадию неопределенности, прежде чем, на основании сопоставления с результатами экспериментов, признаются или отвергаются (см., например, уравнения Максвелла[57]). Поэтому и в случае теории струн требуется либо развитие самой теории, то есть методов расчета и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин.
Фальсифицируемость и проблема ландшафта
В 2003 году выяснилось[58], что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории.
Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100, вероятнее — около 10500; не исключено, что их вообще бесконечное число[59].
В течение 2005 года неоднократно высказывались предположения[60], что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа[61]: человек существует именно в такой Вселенной, в которой его существование возможно.
Вычислительные проблемы
С математической точки зрения еще одна проблема состоит в том, что, как и квантовая теория поля, большая часть теории струн все еще формулируется пертурбативно (в терминах теории возмущений)[62]. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет.
Проблема масштаба «зернистости» пространства
В результате экспериментов по обнаружению «зернистости» (степени квантования) пространства, которые состояли в измерении степени поляризации гамма-излучения, приходящего от далеких мощных источников, выяснилось, что в излучении гамма-всплеска GRB041219A, источник которого находится на расстоянии 300 млн световых лет, зернистость пространства не проявляется вплоть до размеров 10−48 м, что в 1014 раз меньше планковской длины[63]. Данный результат, по всей видимости, заставит пересмотреть внешние параметры струнных теорий[64][65][66].
Текущие исследования
Изучение свойств черных дыр
В 1996 г. струнные теоретики Эндрю Строминджер и Кумрун Вафа, опираясь на более ранние результаты Сасскинда и Сена, опубликовали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга». В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса черных дыр[67], а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого.
Реальным процессам образования черных дыр Строминджер и Вафа противопоставили конструктивный подход. Суть в том, что они изменили точку зрения на образование черных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции.
Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов черной дыры, при которых общие наблюдаемые характеристики, напримермасса и заряд, остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостоянийтермодинамической системы. Затем они сравнили результат с площадью горизонта событий черной дыры — эта площадь пропорциональна энтропии черной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания, — и получили идеальное согласие[68]. По крайней мере, для класса экстремальных черных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии.
Это открытие оказалось важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства черных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убежденный противник теории струн в 1980-е гг., признался в интервью в 1997 г., что «когда струнные теоретики говорят о черных дырах, речь идет едва ли не о наблюдаемых явлениях, и это впечатляет»[19].
Струнная космология
Струнная космология − относительно новая и интенсивно развивающаяся область теоретической физики, в рамках которой осуществляются попытки использования уравнений теории струн для решения некоторых проблем, возникших в ранней космологической теории. Данный подход впервые использован в работах Габриэле Венециано[69], который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля, индуцирующего инфляционное расширение. В струнной космологии вместо этого вводится так называемое дилатонноеполе[70][71], кванты которого, в отличие, например, от электромагнитного поля, не являются безмассовыми, поэтому влияние данного поля существенно лишь на расстояниях порядка размера элементарных частиц или на ранней стадии развития Вселенной[72].
Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, все более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, имеет значение и в космологии[73]. В-третьих, число пространственно-временных измерений в теории струн больше четырех, поэтому космология должна описывать эволюцию всех этих измерений. Вообще, особенность теории струн состоит в том, что в ней, по-видимому, геометрия пространства-времени не фундаментальна, а появляется в теории на больших масштабах или при слабой связи[74].
Косвенные предсказания
Несмотря на то, что арена основных действий в теории струн недоступна прямому экспериментальному изучению[75][76], ряд косвенных предсказаний теории струн все же можно проверить в эксперименте[77][78][79][80].
Во-первых, обязательным является наличие суперсимметрии. Ожидается, что запущенный 10 сентября 2008 года, но полноценно[81] вступивший в строй в 2010 годуБольшой адронный коллайдер сможет открыть некоторые суперсимметричные частицы.[13] Это будет серьезной поддержкой теории струн[19].
Во-вторых, в моделях с локализацией наблюдаемой вселенной в мультивселенной изменяется закон гравитации тел на малых расстояниях. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в сотые доли миллиметра[82]. Обнаружение отклонения от этого закона было бы ключевым аргументом в пользу суперсимметричных теорий.
В-третьих, в тех же самых моделях гравитация может становиться очень сильной уже на энергетических масштабах порядка нескольких ТэВ, что делает возможной ее проверку на Большом адронном коллайдере. В настоящее время идет активное исследование процессов рождения гравитонов и микроскопических черных дыр в таких вариантах теории.
Наконец, некоторые варианты теории струн приводят также и к наблюдательным астрофизическим предсказаниям. Суперструны (космические струны), D-струны или другие струнные объекты, растянутые до межгалактических размеров, обладают сильным гравитационным полем и могут выступать в роли гравитационных линз.
Кроме того, движущиеся струны должны создавать гравитационные волны, которые, в принципе, могут быть обнаружены в экспериментах типа LIGO и VIRGO.
Они также могут создавать небольшие нерегулярности в реликтовом излучении, которые могут быть обнаружены в будущих экспериментах.
Критика
Количество решений
Чтобы построить модели физики элементарных частиц на основе теории струн, физики обычно начинают с определения формы дополнительных измерений пространства-времени. Каждая из этих различных форм соответствует разной возможной вселенной или «состоянию вакуума» с разным набором частиц и сил. Теория струн, как она понимается в настоящее время, имеет огромное количество вакуумных состояний, обычно оцениваемых примерно в 10 500 , и они могут быть достаточно разнообразными, чтобы учесть практически любое явление, которое может наблюдаться при низких энергиях. [118]
Многие критики теории струн выразили озабоченность по поводу большого числа возможных вселенных, описываемых теорией струн. В своей книге Не Даже Wrong , Питер Войт , преподаватель на кафедре математики в Колумбийском университете , утверждает , что большое количество различных физических сценариев делает теория струн бессодержательным в качестве основы для построения модели физики элементарных частиц. По словам Войта,
Возможное существование, скажем, 10 500 различных состояний вакуума для теории суперструн, вероятно, разрушает надежду на использование этой теории для предсказания чего-либо. Если выбрать среди этого большого набора только те состояния, свойства которых согласуются с текущими экспериментальными наблюдениями, вполне вероятно, что их все еще будет так много, что можно будет получить практически любое значение для результатов любого нового наблюдения. [119]
Некоторые физики считают, что такое большое количество решений на самом деле является достоинством, потому что оно может позволить естественное антропное объяснение наблюдаемых значений физических констант , в частности, небольшого значения космологической постоянной. [119] антропный принцип является идея , что некоторые из чисел , входящих в законы физики не фиксированы любым фундаментальным принципом , но должны быть совместимы с развитием разумной жизни. В 1987 году Стивен Вайнберг опубликовал статью, в которой утверждал, что космологическая постоянная не могла быть слишком большой, иначе галактики и разумная жизнь не смогли бы развиваться. [120]Вайнберг предположил, что может существовать огромное количество возможных согласованных вселенных, каждая с различным значением космологической постоянной, и наблюдения указывают на небольшое значение космологической постоянной только потому, что люди живут во вселенной, которая допускает разумную жизнь, и следовательно, наблюдатели существуют. [121]
Теоретик струн Леонард Сасскинд утверждал, что теория струн обеспечивает естественное антропное объяснение небольшого значения космологической постоянной. [122] Согласно Сасскинду, различные вакуумные состояния теории струн могут быть реализованы как разные вселенные внутри более крупной мультивселенной . Тот факт, что наблюдаемая Вселенная имеет небольшую космологическую постоянную, является лишь тавтологическим следствием того факта, что для существования жизни требуется небольшое значение. [123] Многие известные теоретики и критики не согласились с выводами Сасскинда. [124]По словам Войта, «в этом случае [антропные рассуждения] являются не более чем оправданием неудач. Спекулятивные научные идеи терпят неудачу не только тогда, когда они делают неверные прогнозы, но и когда они оказываются бессмысленными и неспособными что-либо предсказать». [125]
Совместимость с темной энергией
Известно, что в теории струн нет вакуума, поддерживающего метастабильную положительную космологическую постоянную , за исключением, возможно, одной неподтвержденной модели, описанной Качру и др . в 2003 году. [126] В 2018 году группа из четырех физиков выдвинула спорную гипотезу, которая подразумевала бы, что такой вселенной не существует . Это противоречит некоторым популярным моделям темной энергии, таким как Λ-CDM , для которых требуется положительная энергия вакуума. Однако теория струн, вероятно, совместима с определенными типами квинтэссенции , когда темная энергия вызывается новым полем с экзотическими свойствами. [127]
Фоновая независимость
Одно из фундаментальных свойств общей теории относительности Эйнштейна состоит в том, что она не зависит от фона , что означает, что формулировка теории никоим образом не отдает предпочтение конкретной геометрии пространства-времени. [128]
Одна из основных критических замечаний в отношении теории струн с самого начала заключается в том, что она не является явно независимой от фона. В теории струн обычно необходимо указать фиксированную опорную геометрию для пространства-времени, а все другие возможные геометрии описываются как возмущения этой фиксированной геометрии. В своей книге «Проблемы с физикой» физик Ли Смолин из Института теоретической физики « Периметр» утверждает, что это основная слабость теории струн как теории квантовой гравитации, говоря, что теория струн не смогла учесть это важное открытие из общей теории относительности. [129]
Другие не согласны с характеристикой теории струн Смолина. В рецензии на книгу Смолина теоретик струн Иосиф Полчинский пишет:
[Смолин] ошибочно принимает один из аспектов используемого математического языка за один из описываемых аспектов физики. Новые физические теории часто открываются с использованием не самого подходящего для них математического языка … В теории струн всегда было ясно, что физика не зависит от фона, даже если используемый язык не является таким, и поиск более подходящего языка продолжается. Действительно, как с запозданием отмечает Смолин, [AdS / CFT] предлагает решение этой проблемы, причем неожиданное и действенное. [130]
Полчински отмечает, что важной открытой проблемой квантовой гравитации является разработка голографических описаний гравитации, которые не требуют, чтобы гравитационное поле было асимптотически анти-де Ситтер. [130] Смолин ответил, сказав, что соответствие AdS / CFT, в его нынешнем понимании, может быть недостаточно сильным, чтобы разрешить все опасения по поводу фоновой независимости. [131]
Социология науки
После суперструнных революций 1980-х и 1990-х годов теория струн стала доминирующей парадигмой теоретической физики высоких энергий. [132] Некоторые теоретики струн выразили мнение, что не существует столь же успешной альтернативной теории, решающей глубокие вопросы фундаментальной физики. В интервью 1987 года нобелевский лауреат Дэвид Гросс сделал следующие неоднозначные комментарии о причинах популярности теории струн:
Самая главная [причина] в том, что других хороших идей нет. Это то, что привлекает к этому большинство людей. Когда люди начали интересоваться теорией струн, они ничего о ней не знали. Фактически, первая реакция большинства людей состоит в том, что теория чрезвычайно уродлива и неприятна, по крайней мере, так было несколько лет назад, когда понимание теории струн было гораздо менее развито. Людям было трудно узнать об этом и возбудиться. Так что я думаю, что настоящая причина, по которой людей это привлекает, заключается в том, что в городе нет другой игры. Все другие подходы к построению теорий великого объединения, которые изначально были более консервативными и только постепенно становились все более и более радикальными, потерпели неудачу, и эта игра еще не провалилась. [133]
Несколько других известных теоретиков и комментаторов высказали аналогичные взгляды, предполагая, что нет реальных альтернатив теории струн. [134]
Многие критики теории струн прокомментировали такое положение вещей. В своей книге, критикующей теорию струн, Питер Войт рассматривает статус исследования теории струн как нездоровый и вредный для будущего фундаментальной физики. Он утверждает, что чрезвычайная популярность теории струн среди физиков-теоретиков частично является следствием финансовой структуры академических кругов и жесткой конкуренции за ограниченные ресурсы. [135] В своей книге «Дорога к реальности» физик-математик Роджер Пенроуз выражает аналогичные взгляды, заявляя: «Часто безумная конкуренция, которую порождает такая простота общения, приводит к побочным эффектам , когда исследователи опасаются остаться позади, если они не присоединятся. » [136]Пенроуз также утверждает, что техническая сложность современной физики заставляет молодых ученых полагаться на предпочтения авторитетных исследователей, а не прокладывать собственные пути. [137] Ли Смолин выражает несколько иную позицию в своей критике, утверждая, что теория струн выросла из традиции физики элементарных частиц, которая препятствует спекуляциям об основах физики, в то время как его предпочтительный подход, петлевая квантовая гравитация , поощряет более радикальное мышление. По словам Смолина,
Теория струн — это мощная, хорошо мотивированная идея, заслуживающая большей части работы, посвященной ей. Если до сих пор она терпела неудачу, основная причина заключается в том, что ее внутренние недостатки тесно связаны с ее сильными сторонами — и, конечно, история еще не закончена, поскольку теория струн вполне может оказаться частью истины. Настоящий вопрос заключается не в том, почему мы потратили столько энергии на теорию струн, а в том, почему мы не израсходовали достаточно энергии на альтернативные подходы. [138]
Смолин предлагает ряд рецептов того, как ученые могут поощрять большее разнообразие подходов к исследованиям квантовой гравитации. [
См. также
- Квантовая гравитация
- Квантовая струна
- Космическая струна
- М-теория (теория бран)
- Суперсимметрия
- Теория бозонных струн
- Теория суперструн
- Нерешенные проблемы современной физики
- Струны
-
История теории струн
-
Первая суперструнная революция
-
Вторая суперструнная революция
-
Пейзаж теории струн
-
Калаби-Яу
-
Действие Намбу – Гото
-
Полякова действие
-
Теория бозонных струн
-
Теория суперструн
-
Струна типа I
-
Струна типа II
-
Струна типа IIA
-
Струна типа IIB
-
Гетеротическая струна
-
суперструны
-
F-теория
-
Теория струнного поля
-
Матричная теория струн
-
Некритическая теория струн
-
Нелинейная сигма- модель
-
Тахионная конденсация
-
Формализм RNS
-
Формализм GS
Понравилась статья про теория струн? Откомментируйте её Надеюсь, что теперь ты понял что такое теория струн, компактификация
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Теория струн и суперструн
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Представь Вселенную!
В течение последних 20 лет своей жизни Альберт Эйнштейн был чем-то вроде чудака в сообществе физиков, как любимый эксцентричный дядюшка, чей любимый предмет разговора привлекает смущенные взгляды вокруг стола. В то время как квантовая теория, теория бесконечно малого, проверялась с недостижимой прежде точностью, он отказывался признать, что это окончательная теория. В последние годы своей жизни он работал над тем, чтобы согласовать свою собственную теорию гравитации и квантовое описание мира. Ему это не удалось, и он умер, так и не увидев осуществления своей заветной мечты.
Более 40 лет спустя Эйнштейн почти оправдан: давняя проблема несовместимости между общей теорией относительности и квантовой механикой, кажется, на пути к разрешению. Решение может быть трудно понять. Если горстка физиков, вовлеченных в так называемые «теории суперструн» (или сокращенно струн), верна, мы живем в мире более странном, чем вы, вероятно, можете себе представить.
Это мир 10 измерений, некоторые из которых свернуты на микроскопическом уровне, а некоторые — «большие» измерения, которые мы воспринимаем как «реальные». Мир, в котором различие между пространством и временем является ложным (как учит общая теория относительности). Мир, в котором само понятие пространства и времени должно исчезнуть. По словам Брайана Грина, профессора Колумбийского университета и автора книги на эту тему, «если теория струн верна, ткань нашей Вселенной обладает свойствами, которые поразили бы даже Эйнштейна».
Выше показан режим замкнутой струны, характерный для безмассового гравитона со спином 2 (частицы, передающей силу гравитации). Это одна из самых привлекательных черт теории струн. В него естественно и неизбежно входит гравитация как одно из фундаментальных взаимодействий. Изображение предоставлено Джоном Пьером.
В теории струн не существует элементарных частиц (таких как электроны или кварки), а есть фрагменты вибрирующих струн. Каждая мода вибрации соответствует отдельной частице и определяет ее заряд и массу. В нынешнем понимании теории эти струны ни из чего не «сделаны»: они являются фундаментальной составляющей материи. Последствия замены точечных частиц вибрирующими микроскопическими струнами огромны. Единственная непротиворечивая структура для описания этих строк подразумевает 10- или даже предположительно 11-мерный мир, в котором свернуты 6 или 7 измерений. Эти дополнительные измерения определяют свойства мира, в котором мы живем. Большие измерения — это то, что мы воспринимаем как обычное пространство и время.
В 10-мерном пространстве-времени теории суперструн мы по-прежнему наблюдаем только 4-мерное пространство-время. Каким-то образом нам нужно связать их, если мы хотим, чтобы суперструны описывали нашу вселенную. Для этого мы свернем дополнительные 6 измерений в маленькое компактное пространство. Если размер компактного пространства порядка струнного масштаба (10 -33 см), то мы не сможем напрямую обнаружить наличие этих дополнительных измерений — они слишком малы. Конечным результатом является то, что мы возвращаемся в наш знакомый (3+1)-мерный мир, но с каждой точкой нашей 4-мерной вселенной связан крошечный «шар» 6-мерного пространства. Это очень схематично показано на иллюстрации справа.
Изображение предоставлено Джоном Пьером
Теория струн как «единая» теория пытается объяснить все четыре силы, наблюдаемые в природе. И действительно, одним из решений струнных уравнений является сила, похожая на гравитацию. Свидетельством силы и красоты теории струн является то, что физики скорее откажутся от самого понятия пространства и времени и допустят существование 10-мерного мира, чем подвергнут сомнению путь, по которому идет поиск единой теории. вел их.
Теория струн может успешно объяснить гравитацию и предсказать суперсимметричные частицы. Но еще пару лет назад это имело мало связи с головоломками в физике. Не было никаких результатов или конкретных прогнозов, которыми можно было бы похвастаться. Это могло быть не более чем красивой математической конструкцией.
Ситуация изменилась в 1996 году. Эндрю Строминджер, тогда работавший в Институте теоретической физики в Санта-Барбаре, и Камрун Вафа из Гарвардского университета использовали теорию струн, чтобы «сконструировать» определенный тип черной дыры, почти так же, как можно «сконструировать» «Атом водорода, записывая уравнения, полученные из квантовой механики, которые описывают электрон, связанный с протоном.
Строминджер и Вафа подтвердили результат, полученный Джейкобом Бекенштейном и Стивеном Хокингом еще в конце 19 века.70-е годы. Бекенштейн и Хокинг обнаружили, что количество беспорядка (или «энтропии») в особом типе черной дыры очень велико. Это был неожиданный результат, так как никто не мог понять (да и расчеты не дали никакого понимания), как такой простой объект, как черная дыра (которая может быть охарактеризована просто ее массой и ее вращением), мог иметь такое большое количество энергии. беспорядок внутри него.
В результате построения этой особой черной дыры с использованием теории струн Строминджер и Вафа смогли получить правильное значение беспорядка, предсказанного Бекенштейном и Хокингом. Этот результат наэлектризовал физическое сообщество! Впервые результат, полученный с помощью «классической физики», можно было получить из теории струн. Несмотря на то, что черные дыры, для которых был получен результат, имеют очень мало общего с черными дырами, которые, как считается, находятся в центре галактик, это новое вычисление иллюстрирует связь между струнами и гравитацией. Кроме того, вычисление дает представление о физических причинах ответа.
Пока никто не знает, является ли теория струн окончательной теорией — теорией всего, если таковая вообще существует. Но невероятная элегантность и потенциал этой теории делают ее сильным лидером в дальнейшем объяснении внутреннего устройства Вселенной в следующем столетии. По словам Эдварда Виттена, пионера и одного из ее лидеров: «Теория струн — это часть физики двадцать первого века, случайно попавшая в век двадцатый».
Для получения дополнительной информации см.:
- http://www.sukidog.com/jpierre/strings/
- http://www.damtp.cam.ac.uk/user/gr/public/qg_ss.html
Дополнительные ссылки
- Интересный факт по этой теме!
Для преподавателей
- Стандарты NCTM и NSES
- Показать мне соответствующие планы уроков
Является ли теория струн наукой? — Scientific American
Поделиться в Facebook
Поделиться в Twitter
Поделиться на Reddit
Поделиться на LinkedIn
Поделиться по эл. Авторы и права: Р. Виндхорст, Университет штата Аризона/H. Ян, Научный центр Спитцера, Калифорнийский технологический институт/ESA/NASA
Является ли теория струн наукой? Физики и космологи обсуждают этот вопрос в течение последнего десятилетия. Теперь сообщество обращается за помощью к философии.
Ранее в этом месяце некоторые из враждующих физиков встретились с философами науки на необычном семинаре, посвященном обвинению в том, что направления теоретической физики оторвались от реалий экспериментальной науки. На карту поставлена целостность научного метода, а также репутация науки среди широкой публики, говорят организаторы семинара.
Семинар, проходивший в Мюнхенском университете Людвига-Максимилиана в Германии 7-9 декабря, стал результатом статьи в Nature год назад, в которой космолог Джордж Эллис из Кейптаунского университета в Южной Африке и астроном Джозеф Силк из Университета Джона Хопкинса в Балтиморе, штат Мэриленд, сетовали на «тревожный поворот» в теоретической физике (G. Ellis и J. Silk Nature 516, 321–323; 2014).
«Сталкиваясь с трудностями в применении фундаментальных теорий к наблюдаемой Вселенной, — писали они, — некоторые ученые утверждают, что, — если теория достаточно элегантна и объяснима, ее не нужно проверять экспериментально».
Первой среди обсуждаемых тем была тестируемость. Чтобы научная теория считалась достоверной, ученым часто требуется, чтобы был проведен эксперимент, который мог бы, в принципе, опровергнуть теорию или «фальсифицировать» ее, как выразился философ науки Карл Поппер в 1930-х годах. В своей статье Эллис и Силк указали, что в некоторых областях некоторые физики-теоретики отошли от этого руководящего принципа — даже выступая за то, чтобы его ослабить.
В качестве основного примера дуэт привел теорию струн. Теория заменяет элементарные частицы бесконечно тонкими струнами, чтобы примирить явно несовместимые теории, описывающие гравитацию и квантовый мир. Струны слишком малы, чтобы их можно было обнаружить с помощью сегодняшних технологий, но некоторые утверждают, что теория струн стоит того, чтобы исследовать ее, независимо от того, смогут ли когда-либо экспериментально измерить ее эффекты, просто потому, что она кажется «правильным» решением многих затруднений.
Силк и Эллис также назвали другую теорию, которая, кажется, отказалась от «попперизма»: концепцию мультивселенной, в которой Большой взрыв породил множество вселенных, большинство из которых радикально отличаются от нашей.
Но во вступительном слове на семинаре Дэвид Гросс, физик-теоретик из Калифорнийского университета в Санта-Барбаре, провел различие между двумя теориями. Он классифицировал теорию струн как проверяемую «в принципе» и, таким образом, совершенно научную, поскольку струны потенциально поддаются обнаружению.
Гораздо более тревожными, по его словам, являются такие концепции, как мультивселенная, потому что другие вселенные, которые она постулирует, вероятно, не могут наблюдаться из нашей, даже в принципе. «Абсурдно просто утверждать, что [теория струн] не является наукой, потому что ее нельзя проверить в данный момент», — говорит Гросс, получивший в 2004 году Нобелевскую премию за свою работу о сильном ядерном взаимодействии, которое хорошо проверено в экспериментах, и также внес важный вклад в теорию струн.
Участник семинара Карло Ровелли, физик-теоретик из Экс-Марсельского университета во Франции, согласен с тем, что тот факт, что теория струн сейчас не поддается проверке, не означает, что она не стоит времени теоретиков. Но главной целью статьи Эллиса и Силка были наблюдения, сделанные философом Ричардом Давидом из Университета Людвига-Максимилиана в его книге 9. 0082 Теория струн и научный метод (Cambridge Univ. Press, 2013). Дэвид писал, что сторонники теории струн начали следовать принципам байесовской статистики, которая оценивает вероятность того, что определенный прогноз окажется верным на основе предшествующих знаний, а затем пересматривает эту оценку по мере приобретения новых знаний. Но, отмечает Дэвид, физики начали использовать чисто теоретические факторы, такие как внутренняя непротиворечивость теории или отсутствие заслуживающих доверия альтернатив, для обновления оценок вместо того, чтобы основывать эти пересмотры на реальных данных.
Динамическое обсуждение
На семинаре Гросс, который предположил, что отсутствие альтернатив теории струн делает ее более вероятной, спорил с Ровелли, который много лет работал над альтернативой, называемой петлевой квантовой гравитацией. Ровелли категорически возражает против предположения об отсутствии жизнеспособных альтернатив. Между тем Эллис отвергает идею о том, что теоретические факторы могут улучшить шансы. «Мой ответ на байесианство таков: новые доказательства должны быть экспериментальными», — говорит он.Другие отметили отдельные проблемы, связанные с использованием байесовской статистики для поддержки теории струн. Сабина Хоссенфельдер, физик Северного института теоретической физики в Стокгольме, сказала, что популярность теории, возможно, способствовала созданию впечатления, что это единственная игра в городе. Но теория струн, вероятно, набрала силу по социологическим причинам, сказала она: молодые исследователи могли обратиться к ней, потому что перспективы работы лучше, чем, например, в менее известной области.
Историк науки Хельге Краг из Орхусского университета в Дании опирался на историческую перспективу. «Предположения о том, что нам нужны «новые научные методы», высказывались и раньше, но попытки заменить эмпирическую проверяемость какими-то другими критериями всегда терпели неудачу», — сказал он. Но, по крайней мере, проблема ограничена лишь несколькими областями физики, добавил он. «Теория струн и космология мультивселенной — лишь малая часть того, чем занимается большинство физиков».
Это слабое утешение для Ровелли, который подчеркивал необходимость четкого разграничения между научными теориями, хорошо подтвержденными экспериментами, и теориями, которые носят спекулятивный характер. «Очень плохо, когда тебя останавливают на улице и говорят: «А ты знал, что мир состоит из струн и что есть параллельные миры?»».
В конце семинара враждующие физики ничуть не приблизились к согласию. Дэвид, который организовал это мероприятие вместе с Силком, Эллисом и другими, говорит, что не ожидает, что люди коренным образом изменят свою позицию. Но он надеется, что знакомство с другими линиями рассуждений может «привести к небольшому сближению». Эллис предполагает, что более успешный формат, такой как двухнедельная летняя школа, поможет прийти к консенсусу.
Эта статья воспроизводится с разрешения и впервые опубликована 23 декабря 2015 г.
ОБ АВТОРАХ
Давиде Кастельвекки — штатный репортер Nature , который практически всю свою жизнь был одержим квантовым вращением. Подпишитесь на него в Твиттере @dcastelvecchi
Давайте поговорим о теории струн!. Многообещающая теория всего или… | Sunny Labh
«Теория струн — это попытка более глубокого описания природы, представляя элементарную частицу не как маленькую точку, а как маленькую петлю вибрирующей струны».
— Эдвард Виттен, один из ведущих специалистов по теории суперструн и пионер М-теории
Я постараюсь сделать этот рассказ максимально понятным. У нас было много дискуссий о стандартной модели физики элементарных частиц, последствиях квантовой механики, недостатках современных теорий квантовой гравитации и так далее. Теория струн — одна из самых противоречивых теорий в физике. Одни ученые считают ее чрезвычайно многообещающей, разрешающей множество оставшихся без ответа вопросов о космосе и математически непротиворечивой, в то время как другие полагают, что она просто неверна и никогда не может быть проверена экспериментально. Давайте сначала проанализируем, нужна ли нам вообще эта теория, откуда она взялась, какие разработки были сделаны до сих пор и каковы ее недостатки.
Согласно современной квантовой механике, материя, как мы ее знаем, состоит из крошечных неразличимых частиц. Эти частицы настолько элементарны, что не могут быть далее разделены или разделены. Кварки, например, — это некоторые из таких частиц, которые входят в группу из трех частиц, удерживаемых вместе квантовой энергией, управляемой глюонами. Теория струн утверждает, что эти частицы не являются фундаментальными. Они состоят из одномерных вибрирующих струн, способных колебаться в различных неопределенных модах. Эти различные режимы колебаний и есть частицы, которые мы наблюдаем и которые мы обнаружили в течение нескольких десятилетий экспериментов с частицами. Эти струны настолько крошечные, что, когда мы наблюдаем за ними с высоты в увеличенном масштабе кадра они выглядят почти идентично точечным частицам. Можно заметить, что концепция струн кажется действительно абсурдной, когда мы думаем о мире практически. Что ж, это так, но это также очень последовательно, по крайней мере, математически, о чем я собираюсь поговорить позже в этой истории.
Эти струны можно понять, как струны гитары. При разных вибрациях струн гитары получается другая нота , и получается другое музыкальное произведение. Точно так же с разной частотой крошечных вибрирующих струн материи проявляются разные частицы. Эти строки, вообще говоря, бывают двух типов: открытые строки и закрытые строки. Это основная идея существования различных типов частиц в природе. Теория струн также способна объяснить не только материю, но и пространство-время. Так же последовательно.
Вверху посередине: Один из пионеров теории струн Джон Шварц. Внизу слева: медалист Филдса и физик-математик Эдвард Виттен, один из пионеров М-теории и теории суперструн, справа: Майкл Грин, один из отцов-основателей теории струн.
Современная физика опирается на два основных фундамента: один управляет крупномасштабными структурами Вселенной, общей теорией относительности, разработанной Альбертом Эйнштейном в 1916 году, и другой, который управляет крошечными формами известной и неизвестной материи, квантовым миром, именно квантовая механика. Ньютоновская механика или классическая механика также в значительной степени помогают понять физические явления Вселенной, но Ньютон оставил без ответа несколько вопросов, которые позже были рассмотрены Эйнштейном, и даже Эйнштейн оставил без ответа несколько вопросов, которые ученые сейчас пытаются раскрыть и найти решения. , одним из которых является теория струн. Все вышеупомянутые теории легли в основу современной физики, но дело в том, что они до сих пор не смогли ответить на несколько загадок Вселенной. Черные дыры, например, эти вещи в космосе очаровательны, но мы все еще многое о них не знаем. Теория струн надеется решить несколько загадок, связанных с черными дырами. Квантовая гравитация — еще одна проблема, с которой физики боролись десятилетиями. Это проблема, которую даже Эйнштейн не мог понять, но пытался решить большую часть последней части своей жизни. Теория струн потенциально может быть жизнеспособным кандидатом на роль теории квантовой гравитации, согласующей законы квантовой механики и общей теории относительности. Это происходит потому, что одна из мод колебаний струн предсказывает существование гравитонов, являющихся переносчиками гравитационной силы. На самом деле, когда вы делаете математические вычисления, связанные с движением струн в пространстве-времени, возникают уравнения Эйнштейна, что примечательно, потому что это подразумевает, что общая теория относительности или уравнения Эйнштейна не являются фундаментальными уравнениями, которые управляют крупномасштабными структурами. . Это еще одна причина, по которой теория струн так многообещающа с точки зрения согласования квантовой механики с общей теорией относительности.
Следовательно, теория струн потенциально может объяснить все четыре фундаментальные силы природы. Это также может объяснить теорию гравитации Эйнштейна и законы квантовой механики. Приложения теории струн заслуживают внимания. Он также решает такие проблемы, как проблема потери информации о черных дырах, в результате которой родился голографический принцип, также известный как соответствие AdS/CFT.
Масштаб : Струны настолько малы, примерно в сто миллиардов миллиардов раз меньше протона, что их невозможно наблюдать с помощью современных технологий.
Измерения: Теория струн, хотя и обещает объяснить все четыре фундаментальные силы природы, не может сделать этого в трех или четырех измерениях. Из-за некоторых самосогласованных ограничений на вибрирующие струны для перемещения в пространстве математика просто не работает для 3-х или 4-х измерений. На самом деле он работает только в 10 и 26 измерениях.
Отсутствие экспериментальных доказательств: Поскольку струны такие крошечные, почти невозможно экспериментировать с ними и проверять правильность самой теории или математики, объясняемой ею. Следовательно, прямых экспериментальных доказательств теории струн нет. По этой причине многие физики считают эту теорию несостоятельной.
Независимо от того, насколько многообещающей является теория струн, она имеет множество ограничений с точки зрения математики, измерений и экспериментальных данных, поэтому она является предметом споров в физическом сообществе. Но, сказав это, это одна из самых сильных структур, которая успешно объединяет фундаментальные силы, стандартную модель физики элементарных частиц и общую теорию относительности Эйнштейна под одной крышей, что делает ее жизнеспособным кандидатом на роль теории всего. Многие выдающиеся физики, такие как Эдвард Виттен, Дэвид Гросс и Хуан Малдасена, работали над поиском рабочей механики для этой теории, тем самым разработав новую теорию, называемую М-теорией, которая объединяет несколько версий теории струн в одну структуру. Но давайте поговорим об этом в моих следующих историях. Это напоминает мне очень красивую цитату физика-теоретика Ли Саймона, упомянутую в его книге 9.0082 Проблемы с физикой, Возникновение теории струн, падение науки и что будет дальше,
«Некоторые теоретики струн предпочитают верить, что теория струн слишком загадочна, чтобы ее могли понять люди, вместо того чтобы рассматривать вероятность того, что это может быть просто неправильно».
Из комиксов XKCD.