Содержание
Как это работает: вечный двигатель
Классификация: никак нет
Вечных двигателей не существует. Тем не менее они делятся на несколько типов.
Вечные двигатели первого рода претендуют на создание энергии из ничего в нарушение первого начала термодинамики (закон сохранения энергии). Не работают.
Вечные двигатели второго рода пытаются многократно использовать однажды уже потраченную энергию, нарушая второе начало термодинамики (принцип неубывания энтропии, или беспорядка). Не работают.
Мнимые вечные двигатели незаметно подпитываются энергией из внешней среды. Работают, но ложно выдаются за вечные двигатели.
Жульнические вечные двигатели создают впечатление работающего perpetuum mobile за счет спрятанного источника энергии. Работают, но вечными двигателями не являются.
Механический вечный двигатель
Perpetuum mobile первого рода
Одна из ранних моделей вечного двигателя. Слева от оси грузов больше, чем справа. С первого взгляда кажется, что левая часть всегда перевешивает, заставляя колесо крутиться. Наверху грузы переваливаются справа налево, и движение продолжается вечно. Но при более внимательном рассмотрении видно, что хотя грузов справа и меньше, но у них больше рычаг, и именно правая сторона может перевешивать.
На самом деле. Истина, как водится, посередине: грузы с двух сторон уравновешивают друг друга, и колесо, немного покачавшись, попросту остановится.
Поплавковый вечный двигатель
Perpetuum mobile первого рода
Боги заставили Сизифа тащить в гору камень, который срывался и катился вниз. Изобретатели этого двигателя решили, что закон Архимеда может работать не хуже наказанного царя Коринфа. Связанные в цепочку запаянные поплавки всплывают в воде, а на воздухе опускаются под действием силы тяжести, вращая соединенные с ними колеса.
На самом деле. Проблема в том, что при входе в воду поплавки должны преодолеть ее сопротивление и приподнять всю цепочку, чтобы высвободить для себя место. На это уходит ровно столько же энергии, сколько «вырабатывает» двигатель. Без участия богов лишней энергии не получится.
Капиллярный вечный двигатель
Perpetuum mobile первого рода
Сила тяжести не дает покоя многим изобретателям вечных двигателей: если хитрым образом преодолеть ее без затрат энергии, а потом сбросить поднятый груз, то на выходе получится «бесплатная» работа. Например, можно заставить воду подниматься из бассейна в стоящий на возвышении сосуд за счет капиллярного эффекта. Из емкости вода будет выливаться обратно в бассейн и крутить колесо.
На самом деле. До определенной высоты вода действительно сама движется вверх, но вот капать в верхнюю емкость она не станет: жидкость удержит тот же капиллярный эффект, который поднял ее из бассейна.
Демон Максвелла
Perpetuum mobile второго рода
Крошечное разумное существо, которое сидит в стакане, разделенном перегородкой, и поднимает ее, чтобы пропустить быстрые молекулы в одну сторону, а медленные в другую, придумал человек, максимально далекий от вечных двигателей. Великий физик Джеймс Максвелл вряд ли предполагал, что изобретатели perpetuum mobile по-своему оценят потенциал созданного им демона. Конечно, они выдумывали вместо этого мифического существа всевозможные механизмы, в том числе и с наномоторами, но суть оставалась неизменной: сделать так, чтобы в одной части сосуда молекулы двигались быстрее, чем в другой, а из возникшего перепада температуры и давления получить энергию.
На самом деле. Эта заманчивая схема вполне может работать, но только при наличии настоящего демона. Без него на сортировку молекул придется тратить энергию, что лишает всю затею смысла.
Вечные часы
Мнимый perpetuum mobile
В 1864 году новозеландский часовщик, математик и астроном Артур Беверли построил часы, идущие без подзавода по сей день. Правда, их несколько раз останавливали для чистки, а однажды они встали сами, но потом вновь начали отсчитывать время. Конструкция хронометра очень проста. В резервуаре с маслом и воздухом плавает грузик, который поднимается и опускается при изменении уровня масла. Движения грузика взводят пружину часов.
На самом деле. Все законы физики строго соблюдаются, но часы Беверли не вечный двигатель. Они незаметно подпитываются энергией из окружающей среды — уровень масла изменяется в зависимости от атмосферного давления и температуры.
Тепловой насос
Мнимый perpetuum mobile
Фактически это холодильник, поставленный камерой в окно, а радиатором в комнату. На обогрев помещения поступает тепло — не только выработанное за счет электричества, но и «высосанное» из холодной окружающей среды. Комната получает в 3–5 раз больше энергии, чем тратится электричества!
На самом деле. Из обогревателя с КПД выше 100% вышел бы отличный вечный двигатель, если бы не одно но. Переход электричества в тепло необратим, и извлечь из лишних градусов прежнее количество электроэнергии нельзя. Так что отапливать дом холодильником задаром не получится, хотя сэкономить можно прилично.
Генератор Бедини
Жульнический perpetuum mobile (первого рода)
В 1984 году американский электрик Джон Бедини закрепил на колесе магниты, поставил рядом индукционную катушку и пару аккумуляторов. Когда магнит приближался к катушке, он возбуждал в ней ток, заряжающий аккумулятор. А когда удалялся, электроника подключала другой аккумулятор, который питал катушку, отталкивал магнит и раскручивал колесо. Через некоторое время батареи менялись местами. Бедини утверждал, что заряд батарей полностью восстанавливается, а колесо может совершать дополнительную работу за счет «свободной энергии» неизвестной науке природы.
На самом деле. На практике колесо, разумеется, останавливалось, но с хорошими аккумуляторами крутилось достаточно долго, чтобы впечатлить дилетантов и убедить их заплатить за набор для сборки вечного двигателя в домашних условиях.
Глава 17 Капиллярные явления. Новые источники энергии
Глава 17 Капиллярные явления
Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же силы молекулярного сцепления (смачивание), которые двигают жидкость вверх, наверху «не выпустят ее из своих объятий», поэтому капиллярный двигатель работать не будет без специальных «конструктивных хитростей».
Один из известных авторов в данной области, И.И. Эльшанский писал: «Ломоносов посвятил немало времени изучению явлений молекулярного сцепления и капиллярности. Растения без них не могли бы существовать. Как бы иначе поднималась влага по стволам и стеблям растений? Но, с другой стороны, по данным М. В. Ломоносова, вода по самому тончайшему капилляру поднимается максимум на десятки миллиметров. А деревья достигают высоты десятков метров! Если, как принято считать, влага самопроизвольно «перетекает» из одного капилляра древесных волокон в другой, почему не допустить, что капиллярный вечный двигатель возможен? Пояснения, что влага в растениях поднимается за счет корневого давления, вряд ли можно считать убедительными. Так где же истина?» (журнал «Новая энергетика», № 14, 2003 год.
На рис. 224 показан пример такого преобразователя энергии, изобретение Александра Родионова (г. Малоярославец, Россия).
Рис. 224. Капиллярная машина
Суть его изобретения в том, что «согласно законам Ньютона и Жюрена жидкость по капиллярам поднимается вверх и, истекая вниз, при этом, она вращает колесо».
Эльшанский обращает внимание на важные детали конструирования таких машин: «Однажды при сборке очередного прибора у меня не оказалось двух одинаковых стеклянных трубок. Пришлось вставить одну трубку из прозрачного полиэтилена. Но, сколько ни старался, вода в сообщающихся сосудах не устанавливалась на одинаковом уровне. В стеклянной трубке он постоянно был более высоким. Вообще-то иначе и быть не может, но все же не следует ли в закон о сообщающихся сосудах ввести слова: «изготовленных из одинаково смачиваемого материала»?
Вывод: при изготовлении капиллярных трубок, материал трубки может быть составной, с разным коэффициентом смачивания. В таком случае, создаются разные условия для «входа» жидкости в трубку, и для ее выхода. Фактически, как мы и рассматривали в начале книги условия работоспособности таких машин, необходимо сконструировать две различные физические системы, и организовать между ними связь.
Другой важный аспект, который предлагает Эльшанский для изучения, состоит в создании эффекта испарения. Именно испарение на верхнем конце капилляра создает в нем разряжение, и заставляет воду подниматься на десятки метров в стволе дерева. Он пишет: «Вероятно, ошибка Родионова и других авторов капиллярных двигателей в том, что они пытались добиться излияния воды из капилляра. А если ее не изливать, а испарять, как это происходит в почве и в растениях, тогда, вероятно, вечный двигатель заработает». В растениях, влага испаряется через поверхность листа.
Устройство Эльшанского признали изобретением, правда, назвали его не «вечный двигатель», как он предлагал, а «тепловой двигатель» (авторское свидетельство СССР № 1455040), рис. 225. Справа на рис. 225, показано устройство, в котором автор предложил применить натуральные капиллярные волокна растений для подъема жидкости и вращения ротора электрогенератора.
Рис. 225. «Испарительные» капиллярные двигатели Эльшанского
Интересный пример простого устройства предложил в 1970 году Лазарев из Новосибирска. Устройство назвали «кольцар Лазарева», поскольку в нем «закольцован» процесс испарения и циркуляции жидкости. При этом, в верхней части можно поставить небольшую турбинку или колесо с лопастями, для демонстрации того, что падающие капли воды могут производить полезную работу. Схема показана на рис. 226.
Рис. 226. Кольцар Лазарева – фонтан Кулибина
Отметим, что аналогичный «вечный фонтан» работает в часах Кулибина, уже более 200 лет (читайте журнал «Изобретатель и Рационализатор», № 11, 2001 год).
Рассмотрим современную схему конструкции, рис. 226. В качестве пористой перегородки, Лазарев использовал пористую керамику, но также вполне подходит древесина (волокна надо использовать вертикально) из лиственных пород. Хвойная древесина смолистая, поэтому хуже смачивается. Толщина пористой перегородки может быть минимальной, достаточной для прочности конструкции. Перегородка должна быть герметично приклеена к корпусу. Корпус – обычная пластиковая бутылка.
Трубка может быть пластиковая, диаметр 3–5 мм. Рабочая жидкость – бензин, или другая легко-испаряемая при комнатной температуре жидкость. Корпус должен быть герметично закрыт.
Принцип работы основан на том, что испаряемая перегородкой жидкость (в нижней части устройства) постепенно конденсируется под действием гравитации. Молекулы сами собой опускаются вниз, и переходят в жидкое состояние вещества. Поперек перегородки должен образоваться температурный градиент. Один из исследователей данного направления, И.А.Прохоров, предложил усилить эффект, поставив поперек перегородки несколько металлических болтов (их крепление тоже надо сделать на герметик), так как теплопроводность металла намного выше, чем у дерева. Перенос тепла усилит эффект испарения.
В общем, «игрушка» интересная, хотя до практически полезных мощностей ее трудно развить. Польза от нее может быть «психологическая», для убеждения «аудитории» в реальности работоспособности монотермического двигателя, поглощающего тепловую энергию среды, без использования двух источников температур. Данная машина способна работать годами, при условии качественного исполнения ее деталей. Масштабный проект может быть интересен, хотя вырабатывать значительную мощность в роторе электрогенератора сможет машина очень больших размеров.
Глава 11. Суд
Глава 11. Суд
Суд как суд. Обычный советский. Всё было предрешено заранее. После двух заседаний в июне 1986 г. МВТС под председательством академика А. П. Александрова, где доминировали работники Министерства среднего машиностроения — авторы проекта реактора, была объявлена
Глава 6
Глава 6
ВСТУПЛЕНИЕВ СУДЬБУШТУРМПеред боевым командиром, лишившимся возможности продолжать службу не только на подводных лодках, но и на надводных военных кораблях, было два проторенных пути. Первый — продолжать службу в штабах или управлениях. Второй путь —
Глава 1
Глава 1
ВОЗВРАЩЕНИЕВЫ ВЕРИТЕ?!Чудеса случаются во все времена. После томительных трех лет подозрений и недоверия — реабилитация.Наступила тяжелая, странная пора. Тысяча дней прокатились через жизнь Берга, и каждый день разрывал его душу и сердце. Волны раздирающих мозг
Глава 2
Глава 2
НА ПЕРЕДОВОЙПЕРЕЛОМ1943 год начинался в новых условиях. Потери немцев под Сталинградом: 175 тысяч убитых и 137 тысяч пленных, 23 дивизии в окружении — эти цифры потрясли весь мир. Громадный успех менял всю обстановку на фронтах. Оживились даже союзники. Италия
Глава 3
Глава 3
СЛОЖНЫЙФАРВАТЕРС МЕРТВОЙ ТОЧКИКак будет развиваться дальше эта необычная и обыденная история? История, так похожая на те, что разыгрываются вокруг нас и с нами в повседневной и всегда такой неповторимой жизни.События в личной жизни Берга назревали.В наркомате
Глава 4
Глава 4
КОНЕЦ!9 МАЯЕще один год позади. Встреча нового, 1945 года в стране прошла спокойно. Наши войска уже дрались близ Будапешта, и каждый день ожидалось сообщение о его взятии. Союзники, увы, не очень старались, и немцы их изрядно поколачивали. Но теперь развязка близилась,
Глава 2
Глава 2
ПАРАЛЛЕЛИУГЛУБЛЯЮТСЯЧЕМ НЕ ГОЛЕМ!Когда советские кибернетики перестали тратить часть усилий на споры, а сосредоточились на своих прямых обязанностях, их детища — кибернетические машины начали делать быстрые успехи.Электронные машины взбираются все выше по
Глава 3
Глава 3
БЕЛЫЙ ФЕРЗЬ ПОКИНУЛ СТОЯНКУПЕРВАЯ ДУЭЛЬПостепенно пришло время, когда сообщения об успехах советских кибернетических машин перестали восприниматься как нездоровая сенсация. Они сделались вестниками будней. Но удивлять людей ЭВМ продолжали — у них в запасе было
Глава 4
Глава 4
ВСТРЕЧА НА ВЕРШИНЕРОЗЫ И РЫБАЧитаешь «Проблемные записки», и бросается в глаза органическое переплетение многочисленных научных направлений, тесное содружество разных секций. Секция бионики, например, изучает живые организмы с целью перенесения в технику
Глава 5
Глава 5
САМЫЙ СЧАСТЛИВЫЙ ДЕНЬПРАВЫ ЛИ ЙОГИ!Мальчишка, чтобы сделать снежную бабу, скатал в ладонях маленький комок снега, бросил его на землю, покатил, и комочек стал расти, наслаиваясь новыми снежными пластами. Катить его труднее и труднее… Мальчишка вытирает варежкой
Глава 1
Глава 1
КАК СТАТЬ ЭЙНШТЕЙНОМ!НЕ ПОПРОБОВАТЬ ЛИ ГНИЛЫХ ЯБЛОК?Я приоткрыла дверь и, стараясь не привлекать к себе внимания, тихонько присела на свободный стул. В небольшой комнате за Т-образным столом сидело человек двадцать. Впрочем, я не успела ни сосчитать присутствующих,
Глава 2
Глава 2
ТРАГЕДИЯ СОРОКОНОЖКИОГОНЬ!Не считаясь с тем, что теории мышления еще не существует, Берг поставил перед советскими кибернетиками заманчивую и весьма принципиальную задачу — научиться составлять алгоритм для обучающей машины, не ожидая рождения теории
Глава 1
Глава 1
КЛАССИФИКАЦИЯ И ОСОБЕННОСТИ
Более ста лет назад (илл. 1), в 1887 году в Москве на русском языке вышла книга В.В. Гринера «Ружьё». Есть там упоминание и о ружьях с односпусковым механизмом. В то далёкое время автор уже пишет, что, по его мнению, ружьё будущего будет
2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов [1.4–1.6].В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь
2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ
2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ
Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений [1. 1; 1.6; 2.6].Есть
Август Крог и механизм регуляции капиллярной моторики. Крог сделал ряд фундаментальных открытий в нескольких областях физиологии и известен тем, что разработал принцип Крога, который гласит, что «для такого большого количества задач будет какое-то выбранное животное или несколько таких животных, на которых наиболее удобно изучать». В 1920 августа Крог был удостоен Нобелевской премии по физиологии и медицине за открытие механизма регуляции капилляров в скелетных мышцах.
Молодежь и образование
Август Крог родился в 1874 году в городке Грено в Ютландии. Его родителями были Вигго Крог, судостроитель, и Мари Крог, урожденная Дрехманн. Он уже в школьные годы очень интересовался естественными науками и проводил простые эксперименты с животными и растениями. На него сильно повлиял его учитель Уильям Серенсен, который показал ему эксперименты в области физиологии. В 1893 он начал свои медицинские исследования в Копенгагенском университете, но очень быстро переключился на зоологию, которая ему больше подходила. Примерно в 1896 году, будучи студентом, он изучал гидростатический механизм личинок Corethra, рода хохлатых комаров, личинки которых живут в воде и поднимаются и опускаются за счет изменения их плотности. Он обнаружил, что у этих личинок в телах были пузырьки газа, которые могли наполняться кислородом из окружающей воды. Его результаты не публиковались до 1911 года.
In 1897 он устроился в лабораторию Христиана Бора, где занимался медицинской физиологией, а после сдачи экзаменов стал ассистентом Бора в Институте медицинской физиологии в Копенгагене. Он исследовал газообмен живых организмов и был удостоен премии Зеегена, награды Австрийской академии наук, за публикацию статьи о выделении газообразного азота через тело. В 1902 г. он прервал учебу для научной поездки в Гренландию, где занимался физико-лимническими вопросами. Он изучал напряжения углекислоты и содержание кислорода в воде родников, ручьев и моря. Роль моря в кислородном балансе атмосферы также была важной областью исследований, и он опубликовал по ней несколько важных статей.
Докторская степень была присуждена в 1903 году на основе исследования газообмена лягушек. Здесь ему удалось доказать, что кожное дыхание животных было очень постоянным, тогда как доля газа, поглощаемого через легкие, сильно колебалась и контролировалась контролем блуждающего нерва. После защиты докторской диссертации он изучал диету инуитов в Гренландии и влияние их очень однобокой диеты, состоящей только из мяса, на их тела.
Академическая карьера
В 1908 г. Август Крог получил должность ассистента профессора физиологии животных в Копенгагенском университете, созданном специально для него и преобразованном в 1916 г. продолжал работать в своих частных лабораториях в Гьенстофте, которые были предоставлены ему Скандинавским инсулиновым фондом.
В самом начале своей профессорской деятельности Крог отверг свою первую гипотезу о том, что газообмен в легких является активной дополнительной формой поглощения газов. Вместо этого он вместе с женой разработал совершенно новую теорию поглощения газов и смог ее подтвердить. С помощью разработанного им микротонометра он смог доказать в 1910 видно, что давление кислорода в альвеолах легких всегда выше, чем в окружающих их кровеносных сосудах, так что газообмен между легкими и кровью осуществляется исключительно за счет диффузионного процесса. При этом он противоречил работе своего коллеги и бывшего директора лаборатории Кристиана Бора и теориям Джона Бердона Сандерсона Холдейна, которые в то время считались любимыми тезисами. Однако работа многих других исследователей подтвердила его гипотезы, и сегодня они являются признанными и исследуемыми доктринами.
Его дальнейшая работа была связана со связыванием и транспортом кислорода в крови, а также с газообменом крови с окружающими тканями. Вместе с Кристианом Бором и Карлом Альбертом Хассельбальхом ему удалось изучить влияние давления углекислого газа на способность гемоглобина поглощать кислород в крови. Вместе с описанием Холдейном влияния кислорода на поглощение углекислого газа можно было бы найти убедительное объяснение газового состава крови.
Капиллярный двигательный механизм регуляции
Вместе с Йоханнесом Линдхардом Август Крог исследовал еще один общий вопрос о кровотоке, чтобы найти объяснение значительного увеличения потребности в мышечной работе. Для этого кровоток, особенно венозной крови, должен был быть сильно изменчивым и в покое недостаточным для полного заполнения желудочка сердца. Это показали эксперименты, подтвердившие эти теории.
Другим важным результатом стал более точный анализ увеличения притока крови и кислорода в мускулатуру во время тренировки. Поскольку давление кислорода в покоящейся мышце всегда было очень низким, достаточное увеличение поступления кислорода можно было объяснить только увеличением площади, где возможен кислородный обмен. Именно на этой основе последующие исследования Крога привели к пониманию участия кровеносных капилляров в мускулатуре и за что он был удостоен Нобелевской премии в 1919 г.20. Здесь ему удалось показать, что капиллярная сеть мышц наполняется кровью только тогда, когда мышца активна. Он исследовал этот процесс, известный как «капиллярно-моторный регуляторный механизм», и смог объяснить как активацию капиллярного кровотока, так и регуляцию.
Последующая жизнь
После Нобелевской премии он продолжил свои исследования в этой области и опубликовал их в 1922 году в своей книге Анатомия и физиология капилляров и других публикациях. Он также распространил свою работу на другие области комплекса, такие как терморегуляция, влияние диеты и мышечной способности, образование молочной кислоты в мышцах, тренировки и мышечное утомление, а также связь с деятельностью почек.В 30-е годы Крог вместе с двумя другими лауреатами Нобелевской премии, радиохимиком Жоржем де Хевеши и физиком Нильсом Бором работал над проницаемостью мембран для тяжелой воды и радиоактивных изотопов, и вместе им удалось получить первый в Дании циклотрон для экспериментов по физиологии животных и растений, а также а также в стоматологической и медицинской работе.
Август Крог умер 13 сентября 1949 года в Копенгагене в возрасте 74 лет. 0044
.
гидродинамика — Капиллярный двигатель невозможен?
спросил
Изменено
4 года, 2 месяца назад
Просмотрено
2к раз
$\begingroup$
Я читал некоторые статьи, в которых говорилось, что не очевидно (или, возможно, невозможно) генерировать энергию с помощью капиллярного действия. С другой стороны, насколько я понимаю, деревья используют капиллярное действие для извлечения воды из почвы, но я думаю, что «уловка» заключается в том, что солнце фактически извлекает воду из растений, заставляя ее испаряться.
Доказано ли, что получение энергии с помощью капиллярного действия невозможно, или это просто считается невозможным?
Есть ли устройство, имитирующее действие растения?
- гидродинамика
- капиллярная
$\endgroup$
$\begingroup$
Капиллярная трубка поднимается, потому что она уменьшает энергию, запасенную в поверхностном натяжении на границе воздух-вода и воздух-стекло. Вода поднимается до тех пор, пока уменьшение энергии поверхностного натяжения не уравновесится увеличением потенциальной энергии гравитации воды.
Но совершенно непонятно, как из этого можно извлечь энергию. Если вы испарите воду из верхней части трубки, то вы, безусловно, вытянете больше воды, чтобы заменить воду, потерянную при испарении. Я предполагаю, что это аналогично тому, как дерево вытягивает воду, хотя мои ограниченные познания в биологии предполагают, что сок поднимается вверх по дереву за счет осмотического давления в корнях, а также за счет капиллярного действия. Я полагаю, вы могли бы поставить микротурбину на дно капиллярной трубки, затем нагреть верхнюю часть и извлечь энергию, когда вода поднимается вверх по трубке, чтобы заменить испарившуюся воду. Однако я сомневаюсь, что это было бы так же эффективно, как использование того же количества тепла в паровом двигателе.
Вам интересно, есть ли способ заставить воду подниматься вверх по трубе, затем опускаться, а затем снова подниматься, вырабатывая энергию при каждом цикле? Это можно было сделать только в том случае, если бы существовал какой-то способ обратимым образом изменить поверхностное натяжение воздух-вода или воздух-стекло. Вы можете легко уменьшить поверхностное натяжение воздуха и воды, добавив поверхностно-активное вещество, и это заставит воду упасть, но вам нужно будет удалить поверхностно-активное вещество, чтобы вода снова поднялась.
$\endgroup$
1
$\begingroup$
Это может работать как знаменитая «Птица Диппи», если у вас есть большой источник воды, такой как озеро или океан:
https://en.