Глава 26 Квантовая природа излучения. Квантовая природа света
Глава 26 Квантовая природа излучения
§197. Тепловое излучение и его характеристики
Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше О К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких — преимущественно длинные (инфракрасные).
Тепловое излучение — практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой. С течением времени, в результате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.
Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела—мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:
где
— энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от до + d.
Единица спектральной плотности энергетической светимости (Rv,T) — джоуль на метр в квадрате в секунду (Дж/(м2•с)).
Записанную формулу можно представить в виде функции длины волны:
dWизлv,v+dv=Rv,T= R,Td. Так как с = /, то
d/d=-c/2=-2/c,
где знак минус указывает на то, что с возрастанием одной из величин ( или ) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,
Rv,T=R,T(2/c). (197.1) с
С помощью формулы (197.1) можно перейти от Rv,T к R,T и наоборот.
Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную излучательность) (ее называют просто энергетической светимостью тела), просуммировав по всем частотам:
318
Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью
показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от до +d, поглощается телом. Спектральная поглощательная способность — величина безразмерная. Rv,T и Av,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и v (вернее, к достаточно узкому интервалу частот от до +d).
Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (Ачv,T=1). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.
Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис.286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при
размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот «полностью поглощается». Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.
Наряду с понятием черного тела используют понятие серого тела — тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела Acv,T=AT=const<1.
Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.
studfiles.net
Квантовая природа света - Справочник химика 21
Эйнштейн и Штарк на основе представления о квантовой природе света и строения молекул установили закон фотохимической эквивалентности, согласно которому каждая молекула, реагирующая под действием света, поглощает один квант радиации, вызывающей реакцию. Из этого закона следует, что в фоточувствительной системе, находящейся под воздействием излучения с частотой v, на каждый поглощенный квант излучения hv приходится одна активированная молекула. По, закону Эйнштейна и Штарка количество энергии , [c.360]
Прочным фундаментом для развития теории фотохимических процессов явилось установление квантовой природы света (1910 г.). [c.287]
С. И. Вавилов в 1920 г. установил независимость коэффициента поглощения света от яркости светового пучка в очень широких пределах изменения энергии поглощаемого света. Квантовая природа света и конечная длительность возбужденных состояний молекул или ионов обусловливает уменьшение светопоглощения. Этот закон приближенный в отношении всех переменных величин — интенсивности света, толщины слоя и концентрации. [c.458]
Таким образом, результаты двух независимых экспериментов убедительно подтверждают представления о квантовой природе света. Однако существует много других экспериментов, в которых свет проявляет волновые свойства. Но споры о том, представляет ли собой свет волны или фотоны, давно улеглись, потому что было найдено удобным использовать оба эти представления. При взаимодействии с макроскопическими объектами свет проявляет такие свойства, что его можно рассматривать как волновой процесс, но при взаимодействии света с атомами или при образовании света атомами удобнее пользоваться представлением о фотонах. В следующей главе мы убедимся, насколько важную роль играют представления о квантовании энергии и о фотонах при описании строения атома. [c.66]
Сущность этого явления заключается в том, что в спектре монохроматического света, рассеянного молекулами какого-либо вещества, наряду с линией, соответствующей начальной частоте падающего света, появляются новые линии, положение которых зависит от структуры молекулы. В соответствии с теорией о квантовой природе света эти явления могут быть истолкованы следующим образом. [c.14]
В диалектическом слиянии обоих представлений было найдено разрешение этого противоречия диалектический синтез теорий о волновой и квантовой природе света лен ит в основе современного учения о свете, а следовательно, и о люминесценции. [c.20]
Теоретический предел чувствительности регистрации спектра задается флуктуационными явлениями в приемнике света. Важной задачей являются поиски приемов регистрации, позволяющих приблизиться к теоретическому пределу ее чувствительности, определяемому квантовой природой света и квантовой природой тока приемника, т. е. приемов, обычно используемых радиофизиками для выделения и измерения слабых флуктуирующих сигналов на фоне сильных флуктуационных помех [242, 243]. Примеры значительного повышения чувствительности спектрального анализа вследствие использования одного из таких приемов — периодического сканирования спектра — описаны в работах [244—246]. В этой главе отражено применение нами метода периодического сканирования для измерения слабых сигналов с целью повышения чувствительности люминесцентного анализа РЗЭ. [c.137]
На рубеже XIX и XX столетий в области учения о строении вещества был сделан ряд открытий, имевших большое принципиальное значение и приведших к признанию сложности атома. К ним относятся открытие электрона (Пер-рен, 1895 г. и Томсон, 1897 г.), обнаружившее атомистическую природу электричества разработка Максвеллом электромагнитной теории света, показавшей единство природы видимого света, ультрафиолетовых и инфракрасных лучей и других электромаг-нитных колебаний открытие давления света Н. П. Лебедевым (1910 г.) открытие Планком (1900 г.) квантовой природы света. [c.17]
Конец XIX и начало XX века ознаменовались коренными изменениями в основных представлениях физики, связанных с вопросами общего мировоззрения. Открытие радиоактивности, сложности строения атома, новых видов частиц, содержащихся в атомах, открытие П. И. Лебедевым давления света, установление квантовой природы света и другие открытия заставляли физиков отказываться от. многих привычных представлений. В такой [c.21]
В этом рассуждении не учитывается различное поведение идентичных микрокристаллов по отношению к равномерному освещению, обусловленное квантовой природой света это явление обязательно в.течет за собой некоторое расширение кривой. Однако эта причина не нарушает правильности наших рассуждений, поскольку они ограничиваются сравнением десенсибилизированной эмульсии с соответствующей исходной эмульсией, т. е. статистический эф факт, обусловленный квантованием света, одинаков в обоих случаях. [c.390]
Для многих реакций квантовый выход Ф равен единице (пример — образование СО при фоторазложении ацетона в газовой фазе [111). Это означает, что каждая молекула, поглотившая свет, испытывает химическое превращение, что можно рассматривать как еще одно доказательство квантовой природы света. [c.18]
Чувствительность фоторецепторов в глазах позвоночных приближается к крайнему пределу, допускаемому квантовой природой света. Кроме того, диапазон восприятия чрезвычайно широк - от света максимальной переносимой яркости до едва заметного освещения. Но по сравнению со слуховыми преобразователями скорость реагирования фоторецепторов очень мала. При оптимальных условиях самому быстрому фоторецептору человеческого глаза требуется примерно 25 мс ддя достижения пика электрической реакции на вспышку света, что более чем в 100 раз больше времени реагирования типичной волосковой клетки. Вероятно, относительная медленность ответа фоторецептора связана с важными ограничениями, заложенными в природе механизма зрительного преобразования. [c.341]
Конец XIX и начало XX века ознаменовались коренными изменениями в самых основах физического мировоззрения. Открытие радиоактивности, сложности строения атома, новых видов частиц, содержащихся в атомах, открытие возможности выделения огромных количеств энергии при радиоактивных процессах, открытие П. Н. Лебедевым давления света, установление квантовой природы света и другие открытия заставляли физиков отказываться от многих привычных представлений. В такой обстановке начались различного рода искания и колебания в вопросах философии, связанных с физикой, что вызвало появление таких идеалистических течений, как эмпириокритицизм. Идейный разгром этих течений был осуществлен В. И. Лениным в его гениальном труде Материализм и эмпириокритицизм . В. И, Ленин с предельной четкостью рассмотрел те выводы новой физики, которые пытался использова гь эмпириокритицизм, и дал свое классическое определение понятия материи, как объективной реальности, существующей независимо от человеческого сознания и отображаемой им. [c.21]
С. И. Вавилов в 1920 г. установил независимость коэффициента поглощения света от яркости светового пучка в очень широких пределах изменения энергии поглощаемого света. Квантовая природа света и конечная длительность возбужденных состояний молекул или ионов обусловливает уменьшение светопоглощения. В целом этот закон является приближенным в отношении всех переменных величин — интенсивности света, толщины слоя и концентрации. С. И. Вавилов в 1949 г. показал, что величина кС зависит от толщины слоя к вследствие резонансного взаимодействия между светящейся и светопоглощающей молекулами. Если концентрация раствора выражена в молях на литр, а толщина слоя— в сантиметрах, то коэффициент к называется молярным коэффициентом погашения, или молярным коэффициентом зкстинкции, и представляет собой оптическую плотность 1 мл раствора, налитого в кювету толщиной 1 см. Величина оптической плотности может быть получена из математического выражения закона Бугера — Ламберта — Бера [c.573]
В соответствии с представлениями квантовой теории при взаимодействии излучения и вещества (например, при поглощении или испускании света) передача энергии происходит не непрерывно во времени, а прерывисто, отдельными целыми порциями-квантами лучистой энергии (их называют также световыми квантами и фотонами). Величина этих квантов пропорциональна частоте света у секг и равна /г-у, где к — универсальная постоянная Планка. Энергия световых квантов крайне мала (например, обычная электрическая лампочка излучает примерно 10 квантов в секунду), поэтому человеческий глаз не в состоянии ощутить мелькание отдельных квантов и воспринимает свет как непрерывное явление [38, 57]. ( Ощутимость глазом квантовой природы света возможна лишь при наблюдении в специальных условиях крайне слабых световых потоков, лежащих у порога зрительного восприятия [9]). Таким образом, волновые свойства света представляют собой статистическое явление, возникающее в результате суммированного воздействия громадного числа ничтожно малых световых квантов. [c.8]
Фотохимические реакции. Фотохимическими реакциями называют те реакции, которые возникают или ускоряются под действием света. Среди фотохимических реакций имеются реакции синтеза, разложения, восстановления, гидролиза, полимеризации, а также внутримолекулярные перегруппировки и аллотропные изменения. Исключительное значение фотохимические реакции имеют в биологии, так как синтез вещества живых организмов начинается с фотохимического процесса ассимиляции углекислого газа зелеными растениями, содержащими в клетках листьев хлорофилловый аппарат, обеспечивающий образование углеводов из углекислого газа и воды. Для того чтобы энергия света могла активировать молекулы и таким образом вызывать химические реакции, необходимо, чтобы свет поглощался данным соединением (закон Гроттгуса — Дрейпера). Квантовая природа света, открытая М. Планком в 1900 г., привела И. Штарка и А. Эйнштейна к формулировке второго закона фотохимии, согласно которому превращение одной молекулы требует поглощения одного кванта света. Квантовым выходом называют отношение числа молекул, прореагировавших в фотохимической реакции, к числу поглощенных квантов, т. е. величину [c.297]
С этой целью постараемся придумать опыт, при котором можно было бы измерять и положение и импульс частицы, например электрона (см. рис. 56). Источником электронов может служить нить накала. Электронам можно сообщить точно известную энергию, пропустив их через точно известную ускоряющую разность потенциалов V с помощью сетки, соединенной с нитью через батарею. Пропустив далее электроны через установленные соответствующиА образом щели, мы получим резко очерченный пучок электронов, энергия (и, следовательно, импульс) которого будет известна точно. Теперь нам остается только определить в каждый момент времени точные положения электронов пучка, и тогда мы сможем предсказать по законам классической механики положения электронов в любой будущий момент времени с абсолютной точностью. Чтобы сделать это, установим микроскоп с высокой разрешающей способностью с соответствующей системой освещения. Когда электроны сталкиваются с фотонами из источника света (мы должны, конечно, признавать квантовую природу света), то некоторые из фотонов в результате отскакивания попадают в микроскоп и наблюдатель видит вспышки света. Он отмечает в поле зрения микроскопа положения, в которых появляются эти вспышки, и таким образом узнает положения и импульсы частиц в некоторый момент времени. Согласно классической механике, он должен быть в состоянии предсказать точно их будущее движение. Нет ничего проще квантово-механический пессимизм представляется, на первый взгляд, совершенно неоправданным. [c.178]
При выводе формулы (6) мы ио учитываем флуктуаций в число квантов, так как считаем, что е[c.309]
Результаты излучения фотохимических реакций тоже можно рассматривать как доказательства квантовой природы света. Квантовые нредстав-ления — это основа фотохимии, и одной из главных характеристик фотохимической реакции является полный квантовый выход вещества В — продукта фоторазложения вещества А, по реакции А + /IV В, — который можно записать в виде отношения [c.18]
С. И. Вавилов, 1937—1950 гг.. Основы микрооптики (квантовая природа света, природа излучателей и др.). [c.120]
chem21.info
Реферат: Квантовая природа света
Квантовая природа света. Волновые свойства света, обнаруживаемые в явлениях интерференции и дифракции, и корпускулярные свойства света, проявляющиеся при фотоэффекте и эффекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классической физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является объяснение всех явлений, в том числе и тех, которые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве.
Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество современной квантовой теории в объяснении всех световых явлений не означает, что никаких волн в природе нет.
Волновые свойства электрона. Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому другому материальному объекту. Эта идея была лишь теоретической гипотезой, так как в то время наука не располагала экспериментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом заключалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фотонов света, выдвинутой им после открытия явления фотоэффекта.
Гипотеза де Бройля существовании волн материи была детально разработана, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, каким связаны между собой длина световой волны и импульс фотона. Найдем выражение, связывающее импульс фотона р с длиной волны света . Импульс фотона определяется формулой:
P=mc(1)
Л. Де Бройль
рис.1 рис. 2
Из уравнения
Е=mс2=hv (2)
можно определить массу фотона:
(3)
Учитывая это, можно формулу преобразовать так:
(4)
Отсюда получаем для длины световой волны формулу:
(5)
Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела массой т, движущегося со скоростью v, может быть найдена так:
(6)
Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и d угла дифракционного максимума можно по уравнению Вульфа — Брэггов
2d sin=k
вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов , вычисленной по известному ускоряющему напряжению U:
Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.
Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих - условию дифракционного максимума.
Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов.
Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:
Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.
рис. 3 рис. 4
При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана.
Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выражение для скорости электрона на первой круговой орбите, получим:
(7)
Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем:
(8)
Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля.
Такая формулировка постулата Бора соединяет в себе одновременно утверждение о наличии у электрона волновых и корпускулярных свойств, отражая его двойственную природу. Соединение волновых и корпускулярных свойств в этом постулате происходит потому, что при расчете длины волны электрона используется модуль скорости , полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r.
Взаимные превращения света и вещества. Глубокое единство двух различных форм материи — вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов — обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы.
Самый известный пример взаимных превращений частиц — это превращение пары электрон — позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда (электрон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения.
Процесс, обратный аннигиляции, наблюдается при взаимодействии гамма-квантов с атомными ядрами. Гамма-квант, энергия которого превышает энергию покоя Ео=2m0c2 пары электрон — позитрон, может превратиться в такую пару.
Таким образом, материя не только многообразна в своих формах, но и едина в своей сущности. Разделение материальных объектов на отдельные группы и виды условно и относительно.
www.referatmix.ru
Квантовая физика: квантовые свойства света
Задумывались ли вы о том, что собой представляют на самом деле многие световые явления? Для примера возьмем фотоэффект, тепловые волны, фотохимические процессы и тому подобное – все это квантовые свойства света. Если бы они не были открыты, труды ученых не двинулись бы с мертвой точки, собственно, как и научно-технический прогресс. Изучают их в разделе квантовой оптики, который неразрывно связан с одноименным разделом физики.
Квантовые свойства света: определение термина
До недавнего времени четкую и понятную трактовку данному оптическому явлению дать не могли. Им успешно пользовались в науке и повседневной жизни, на его основе строили не только формулы, но и целые задачи по физике. Сформулировать окончательное определение получилось лишь у современных ученых, которые подводили итоги деятельности своих предшественников. Итак, волновые и квантовые свойства света – это следствие особенностей его излучателей, коими являются электроны атомов. Квант (или фотон) образуется за счет того, что электрон переходит на пониженный энергетический уровень, тем самым генерируя электро-магнитные импульсы.
Первые оптические наблюдения
Предположение о наличии у света квантовых свойств появилось в XIX столетии. Ученые открыли и усердно изучали такие явления, как дифракция, интерференция и поляризация. С их помощью была выведена электромагнитная волновая теория света. Она базировалась на ускорении движения электронов во время колебания тела. За счет этого происходило нагревание, а следом за ним появлялись световые волны. Первую авторскую гипотезу на сей счет сформировал англичанин Д. Рэлей. Он расценивал излучение как систему одинаковых и постоянных волн, причем в замкнутом пространстве. Согласно его выводам, при уменьшении длины волн мощность их должна была непрерывно возрастать, более того, требовалось наличие ультрафиолетовых и рентгеновских волн. На практике же все это не подтвердилось, и за дело взялся другой теоретик.
Формула Планка
В самом начале XX века Макс Планк – физик немецкого происхождения – выдвинул интересную гипотезу. Согласно ей, излучение и поглощения света происходит не непрерывно, как думали ранее, а порционно – квантами, или, как их еще называют, фотонами. Была введена постоянная Планка – коэффициент пропорциональности, обозначаемый буквой h, и он был равен 6,63·10-34Дж·с. Дабы высчитать энергию каждого фотона, требовалась еще одна величина – v – частота света. Постоянная Планка умножалась на частоту, и в результате получали энергию отдельно взятого фотона. Так немецкий ученый точно и грамотно закрепил в одной простой формуле квантовые свойства света, которые ранее были обнаружены Г. Герцем и обозначены им как фотоэффект.
Открытие фотоэффекта
Как мы уже сказали, ученый Генрих Герц был первым, кто обратил внимание на незамечаемые ранее квантовые свойства света. Фотоэффект был открыт в 1887 году, когда ученый соединил освещенную цинковую пластину и стержень электрометра. В случае если до пластины доходит положительный заряд, электрометр не разряжается. Если излучается заряд отрицательный, то прибор начинает разряжаться, как только на пластину попадает луч ультрафиолета. В ходе данного практического опыта было доказано, что пластина под воздействием света может излучать отрицательные электрические заряды, которые впоследствии получили соответствующее название - электроны.
Практические опыты Столетова
Практические эксперименты с электронами проводил русский исследователь Александр Столетов. Для своих опытов он использовал вакуумный стеклянный баллон и два электрода. Один электрод использовался для передачи энергии, а второй был освещаемым, и к нему подводился отрицательный полюс батареи. В ходе данной операции начинала возрастать сила тока, но через некоторое время она становилась постоянной и прямо пропорциональной излучению светового потока. В результате было выявлено, что кинетическая энергия, а также задерживающие напряжения электронов не зависят от мощности светового излучения. Но увеличение частоты света заставляет расти данный показатель.
Новые квантовые свойства света: фотоэффект и его законы
В ходе развития теории Герца и практики Столетова были выведены три основные закономерности, по которым, как оказалась, функционируют фотоны:
1. Мощность светового излучения, которое падает на поверхность тела, прямо пропорциональна силе тока насыщения.
2. Мощность светового излучения никак не влияет кинетическую энергию фотоэлектронов, а вот частота света является причиной линейного роста последней.
3. Существует некая «красная граница фотоэффекта». Суть заключается в том, что если частота меньше минимального показателя частоты света для данного вещества, то фотоэффекта не наблюдается.
Трудности столкновения двух теорий
После формулы, выведенной Максом Планком, наука столкнулась с дилеммой. Ранее выведенные волновые и квантовые свойства света, которые были открыты чуть позже, не могли существовать в рамках общепринятых физических законов. В соответствии с электромагнитной, старой теорией, все электроны тела, на которое попадает свет, должны приходить в вынужденное колебание на равных частотах. Это порождало бы бесконечно большую кинетическую энергию, что никак невозможно. Более того, для накопления необходимого количества энергии электронам нужно было пребывать в состоянии покоя десятки минут, в то время как явление фотоэффекта на практике наблюдается без малейшей задержки. Дополнительная путаница возникала также из-за того, что энергия фотоэлектронов не зависела от мощности светового излучения. Кроме того, еще не была открыта красная граница фотоэффекта, а также не была высчитана пропорциональность частоты света кинетической энергии электронов. Старая теория не смогла четко объяснить видимые глазу физические явления, а новая была еще не до конца отработанной.
Рационализм Альберта Эйнштейна
Лишь в 1905 году гениальный физик А. Эйнштейн выявил на практике и четко сформулировал в теории, какова она - истинная природа света. Волновые и квантовые свойства, открытые с помощью двух противоположных друг другу гипотез, в равных частях присущи фотонам. Для полноты картины не хватало лишь принципа дискретности, то есть точного местонахождения квантов в пространстве. Каждый квант – это частица, которая может поглощаться или излучаться как единое целое. Электрон, «проглатывая» внутрь себя фотон, увеличивает свой заряд на значение энергии поглощаемой частицы. Далее, внутри фотокатода электрон движется к его поверхности, сохраняя при этом «двойную порцию» энергии, которая на выходе превращается в кинетическую. Таким простым образом и осуществляется фотоэффект, в котором отсутствует запоздалая реакция. У самого финиша электрон выпускает из себя квант, который и падает на поверхность тела, излучая при этом еще больше энергии. Чем больше количество выпущенных фотонов – тем мощнее излучение, соответственно, и колебание световой волны растет.
Простейшие приборы, в основе которых лежит принцип фотоэффекта
После открытий, сделанных немецкими учеными на заре ХХ столетия, началось активное применение квантовых свойств света для изготовления различных приборов. Изобретения, принцип действия которых заключается в фотоэффекте, называют фотоэлементами, простейший представитель которых – вакуумный. В числе его недостатков можно назвать слабую проводимость тока, низкую чувствительность к излучению длинных волн, из-за чего он не может быть использован в цепях переменного тока. Вакуумный прибор широко используется в фотометрии, им измеряют силу яркости и качества света. Также он играет важную роль в фототелефонах и в процессе воспроизведения звука.
Фотоэлементы с проводниковыми функциями
Это уже совсем иной тип приборов, в основе которых лежат квантовые свойства света. Их назначение – изменение концентрации носителей тока. Данное явление иногда называют внутренним фотоэффектом, и он составляет основу работы фоторезисторов. Данные полупроводники играют очень важную роль в нашей повседневной жизни. Впервые их начали использовать в ретро-автомобилях. Тогда они обеспечивали работу электроники и аккумуляторов. В середине ХХ века подобные фотоэлементы стали применять для строительства космических кораблей. До сих пор за счет внутреннего фотоэффекта работают турникеты в метро, портативные калькуляторы и солнечные батареи.
Фотохимические реакции
Свет, природа которого стала лишь частично доступна науке в ХХ веке, на самом деле влияет на химические и биологические процессы. Под воздействием квантовых потоков начинается процесс диссоциации молекул и их слияние с атомами. В науке такое явление называется фотохимией, а в природе одним из его проявлений является фотосинтез. Именно за счет световых волн в клетках производятся процессы по выбросу определенных веществ в межклеточное пространство, за счет чего растение приобретает зеленый оттенок.
Влияют квантовые свойства света и на человеческое зрение. Попадая на сетчатку глаза, фотон провоцирует процесс разложение молекулы белка. Данная информация транспортируется по нейронам в мозг, и после ее обработки мы можем видеть все при свете. С наступлением темноты молекула белка восстанавливается, и зрение аккомодируется к новым условиям.
Итоги
В ходе данной статьи мы выяснили, что главным образом квантовые свойства света проявляются в явлении, называемом фотоэффектом. Каждый фотон имеет свой заряд и массу, и при столкновении с электроном попадает внутрь него. Квант и электрон становятся одним целым, и их совместная энергия превращается в кинетическую, что, собственного говоря, и требуется для осуществления фотоэффекта. Волновые колебания при этом могут увеличить производимую фотоном энергию, но лишь до определенного показателя.
Фотоэффект в наши дни является незаменимой составляющей большинства видов техники. На его основе строят космические лайнеры и спутники, разрабатывают солнечные батареи, используют как источник вспомогательной энергии. Кроме того, световые волны оказывают огромное влияние на химико-биологические процессы на Земле. За счет простых солнечных лучей растения становятся зелеными, земная атмосфера окрашивается во всю палитру синего цвета, и мы видим мир таким, каков он есть.
fb.ru
Реферат - Квантовая природа света
Л. Де Бройль
рис.1 рис. 2
Из уравнения Е=mс2=hv (2) можно определить массу фотона: (3) Учитывая это, можно формулу преобразовать так: (4) Отсюда получаем для длины световой волны формулу: (5) Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела массой т, движущегося со скоростью V, может быть найдена так: (6) Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и d угла дифракционного максимума можно по уравнению Вульфа — Брэггов 2d sin=k вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов , вы численной по известному ускоряющему напряжению U:
Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны. Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих - условию дифракционного максимума. Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов. Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:
Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.
рис. 3 рис. 4
При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана. Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выражение для скорости электрона на первой круговой орбите, получим: (7) Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем: (8) Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля. Такая формулировка постулата Бора соединяет в себе одновременно утверждение о наличии у электрона волновых и корпускулярных свойств, отражая его двойственную природу. Соединение волновых и корпускулярных свойств в этом постулате происходит потому, что при расчете длины волны электрона используется модуль скорости , полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r. Взаимные превращения света и вещества. Глубокое единство двух различных форм материи — вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов — обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы. Самый известный пример взаимных превращений частиц — это превращение пары электрон — позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда (электрон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения. Процесс, обратный аннигиляции, наблюдается при взаимодействии гамма-квантов с атомными ядрами. Гамма-квант, энергия которого превышает энергию покоя Ео=2m0c2 пары электрон — позитрон, может превратиться в такую пару. Таким образом, материя не только многообразна в своих формах, но и едина в своей сущности. Разделение материальных объектов на отдельные группы и виды условно и относительно.
www.ronl.ru
Квантовая природа света
Квантовая природа света. Волновые свойства света, обнаруживаемые в явлениях интерференции и дифракции, и корпускулярные свойства света, проявляющиеся при фотоэффекте и эффекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классической физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является объяснение всех явлений, в том числе и тех, которые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве.
Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество современной квантовой теории в объяснении всех световых явлений не означает, что никаких волн в природе нет.
Волновые свойства электрона. Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому другому материальному объекту. Эта идея была лишь теоретической гипотезой, так как в то время наука не располагала экспериментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом заключалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фотонов света, выдвинутой им после открытия явления фотоэффекта.
Гипотеза де Бройля существовании волн материи была детально разработана, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, каким связаны между собой длина световой волны и импульс фотона. Найдем выражение, связывающее импульс фотона р с длиной волны света . Импульс фотона определяется формулой:
P=mc(1)
Л. Де Бройль
рис.1 рис. 2
Из уравнения
Е=mс2=hv (2)
можно определить массу фотона:
(3)
Учитывая это, можно формулу преобразовать так:
(4)
Отсюда получаем для длины световой волны формулу:
(5)
Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела массой т, движущегося со скоростью v, может быть найдена так:
(6)
Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и d угла дифракционного максимума можно по уравнению Вульфа — Брэггов
2d sin=k
вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов , вычисленной по известному ускоряющему напряжению U:
Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.
Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих - условию дифракционного максимума.
Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов.
Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:
Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.
рис. 3 рис. 4
При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана.
Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выражение для скорости электрона на первой круговой орбите, получим:
(7)
Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем:
(8)
Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля.
Такая формулировка постулата Бора соединяет в себе одновременно утверждение о наличии у электрона волновых и корпускулярных свойств, отражая его двойственную природу. Соединение волновых и корпускулярных свойств в этом постулате происходит потому, что при расчете длины волны электрона используется модуль скорости , полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r.
Взаимные превращения света и вещества. Глубокое единство двух различных форм материи — вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов — обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы.
Самый известный пример взаимных превращений частиц — это превращение пары электрон — позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда (электрон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения.
Процесс, обратный аннигиляции, наблюдается при взаимодействии гамма-квантов с атомными ядрами. Гамма-квант, энергия которого превышает энергию покоя Ео=2m0c2 пары электрон — позитрон, может превратиться в такую пару.
Таким образом, материя не только многообразна в своих формах, но и едина в своей сущности. Разделение материальных объектов на отдельные группы и виды условно и относительно.
doc4web.ru
Реферат - Квантовая природа света
. Волновые свойства света, обнаруживаемые в явлениях интерференции и дифракции, и корпускулярные свойства света, проявляющиеся при фотоэффекте и эффекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классической физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является объяснение всех явлений, в том числе и тех, которые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве.
Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество современной квантовой теории в объяснении всех световых явлений не означает, что никаких волн в природе нет.
Волновые свойства электрона. Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому другому материальному объекту. Эта идея была лишь теоретической гипотезой, так как в то время наука не располагала экспериментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом заключалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фотонов света, выдвинутой им после открытия явления фотоэффекта.
Гипотеза де Бройля существовании волн материи была детально разработана, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, каким связаны между собой длина световой волны и импульс фотона. Найдем выражение, связывающее импульс фотона р с длиной волны света . Импульсфотона определяется формулой:
P=mc(1)
Л. Де Бройль
рис.1 рис. 2
Из уравнения
Е= m с2 = hv (2)
можно определить массу фотона:
(3)
Учитывая это, можно формулу преобразовать так:
(4)
Отсюда получаем для длины световой волны формулу:
(5)
Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела массой т, движущегося со скоростью v, может быть найдена так:
(6)
Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и dугла дифракционного максимума можно по уравнению Вульфа — Брэггов
2d sin=k
вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов , вы численной по известному ускоряющему напряжению U:
Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.
Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих — условию дифракционного максимума.
Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов.
Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:
Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.
рис. 3 рис. 4
При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана.
Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выражение для скорости электрона на первой круговой орбите, получим:
(7)
Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем:
(8)
Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля.
Такая формулировка постулата Бора соединяет в себе одновременно утверждение о наличии у электрона волновых и корпускулярных свойств, отражая его двойственную природу. Соединение волновых и корпускулярных свойств в этом постулате происходит потому, что при расчете длины волны электрона используется модуль скорости , полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r.
Взаимные превращения света и вещества. Глубокое единство двух различных форм материи — вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов — обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы.
Самый известный пример взаимных превращений частиц — это превращение пары электрон — позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда (электрон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения.
Процесс, обратный аннигиляции, наблюдается при взаимодействии гамма-квантов с атомными ядрами. Гамма-квант, энергия которого превышает энергию покоя Ео=2m0c2 пары элект рон — позитрон, может превратиться в такую пару.
Таким образом, материя не только многообразна в своих формах, но и едина в своей сущности. Разделение материальных объектов на отдельные группы и виды условно и относительно.
www.ronl.ru