Электронная конфигурация атома. Цезий энергетические уровни


Строение атома цезия (Cs), схема и примеры

Общие сведения о строении атома цезия

Относится к семейству s-элементов. Металл. Обозначение – Cs. Порядковый номер – 55. Относительная атомная масса – 132,95 а.е.м.

Электронное строение атома цезия

Атом цезия состоит из положительно заряженного ядра (+55), внутри которого есть 55 протонов и 78 нейтронов, а вокруг, по шести орбитам движутся 55 электронов.

Рис.1. Схематическое строение атома цезия.

Распределение электронов по орбиталям выглядит следующим образом:

+55Cs)2)8)18)18)8)1;

1s22s22p63s23p63d104s24p64d105s25p66s1.

Внешний энергетический уровень атома цезия содержит 1 электрон, который является валентным. Возбужденного состояния нет. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентный электрон атома цезия можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), ml (магнитное) и s (спиновое):

Подуровень

n

l

ml

s

s

6

0

0

+1/2

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Цезий энергетические уровни - Справочник химика 21

    У цезия (№ 55) появляется один электрон в подуровне шестого энергетического уровня (и=6, /=0), хотя у него не только не достроен пятый уровень, но и еще не заполнен 14-электронный /-подуровень четвертого уровня. Второй -электрон в шестом уровне появляется у бария. [c.41]

    Вращение электрона вокруг собственной оси в отличие от вращения вокруг атомного ядра обозначают как (нем.) или spin (англ.). Оно определяется квантовым числом, уже упомянутым на стр. 145 и называемым спиновым квантовым числом s. Вращение электрона вокруг собственной оси вносит свою долю в магнитный момент атома, так как вращение электрически заряженного шарика вокруг собственной оси оказывает такое же действие, как электрический круговой ток. Правда, влияние спинового квантового числа s на магнитный момент атома, так же как влияние магнитного квантового числа т, обусловленного орбитальным моментом, проявляется только тогда, когда на атом действует внешнее магнитное поле. Однако, с другой стороны, вращение электрона вокруг собственной оси оказывает также влияние на вращательный импульс атома. Вследствие этого общий вращательный импульс атома и таким образом его энергетическое состояние зависят не только от орбитального квантового числа I, но также и от спинового квантового числа s. Из обоих чисел образуется так называемое внутреннее квантовое число j. Последнее всегда имеет положительное значение, а именно для I = О оно имеет только одно значение (] = 1/2), а для каждого / > О два значения, например j = 1з ж ) = 1/2 ддя I = 1. С позиций волновой механики также можно обосновать спиновое квантовое число s и его комбинацию с I, дающую квантовое число /, хотя объяснение спинового квантового числа S здесь несколько иное. Так как у щелочных металлов все -уровни, за исключением тех, для которых I = 0, делятся на два энергетических уровня, все линии в спектрах щелочных металлов, которые образуются за счет перехода на основной уровень 1 = 0, должны давать дублеты. Это и наблюдается в действительности. Расстояние между линиями дублета сильно возрастает с увеличением атомного веса. У желтой натриевой линии оно так мало (разница в длине волн 5,97 A), что для разделения этих составляющих требуется хороший спектроскоп. У цезия расстояние, однако, так велико, что обе синие линии цезия различаются даже при довольно слабой дисперсии (разница в длине волн составляет здесь 37,94 A для лежащего в инфракрасной области дублета первого члена главной серии цезия она составляет даже 422,4А). При переходах на более высокие уровни, чем основной, в эмиссионном спектре могут появиться более чем две линии, так как в этом случае не только исходный, но и конечный уровень разделяется на два уровня. В таких случаях говорят о сложных дублетах . [c.197]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    В 6-м периоде после заполнения 6 -оболочки (цезий—барий) и появления первого электрона на 5й-оболочке (лантан) начинается заполнение более глубокой 4/ -оболочки в ряду лантаноидов (церий—лютеций). Только после того как заполнится оболочка 4/1", электроны последующих элементов начинают занимать более высокий энергетический уровень Ъй (ряд гафний—ртуть). Далее после заполнения 5с2 -оболочки заполняется уровень 6р у таллия—радона. В 6-м периоде вследствие заполнения 4/ -оболочки оказываются 32 элемента. [c.15]

    Бриджмен [483] обнаружил также превращение цезия (ирп давлении около 50 000 атм) с уменьшением объема на 5,6%, несмотря на то, что уже до этого перехода цезий обладает плотной упаковкой. Расчеты [485] подтвердили предположение о том, что это превращение цезия соответствует переходу валентного электрона с уровня 6.ь на незаполненный уровень Ъд.. Впоследствии этот вопрос был детально рассмотрен Холлом [470]. Холл отметил, что цезий обладает 6. -, Ъд,- и 4/-состоя-ниями, энергетически весьма близкилга друг к другу. В цитированной работе [470] Холл приводит данные об изменении электросопротивления цезия в условиях этого перехода (прп давлении около 53 200 атм). Сопротивление при этом быстро возрастает вдвое и затем снова резко снижается. По мнению Холла, это свидетельствует о том, что б5-электрон с повышением давления сначала переходит в состояние 4/, превращая тем самым цезий в изолятор, а затем — в состояние Ъd, превращая цезий снова в проводник электричества. [c.254]

chem21.info

Цезий и его характеристики

Общая характеристика цезия

Цезий встречается в природе в составе многочисленных минералов, наибольшее значение из которых имеют поллуцит (Cs,Na)2Al2Si4O12×h3O и авогадрит (K,Cs)BF4. Известно, что он также входит в состав некоторых алюмосиликатов в виде примеси.

В виде простого вещества цезий представляет собой металл золотисто-желтого цвета (рис. 1) с объемно-центрированной кристаллической решеткой. Плотность – 1,9 г/см 3. Температура плавления 28,4oС, кипения – 685oС. Мягкий, легко режется ножом. На воздухе самовоспламеняется.

Рис. 1. Цезий. Внешний вид.

Атомная и молекулярная масса цезия

Относительной молекулярная масса вещества (Mr) – это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (Ar) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии цезий существует в виде одноатомных молекул Cs, значения его атомной и молекулярной масс совпадают. Они равны 132,9054.

Изотопы цезия

Известно, что в природе цезий может находиться в виде единственного стабильного изотопа 133Cs. Массовое число равно 133, ядро атома содержит пятьдесят пять протонов и семьдесят восемь нейтронов.

Существуют искусственные нестабильные изотопы цезия с массовыми числами от 112-ти до 151-го, среди которых наиболее долгоживущим является изотоп 135Cs с периодом полураспада равным 2,3 млн. лет.

Ионы цезия

На внешнем энергетическом уровне атома цезия имеется один электрон, который является валентным:

1s22s22p63s23p63d104s24p64d105s25р 66s1.

В результате химического взаимодействия цезий отдает свой валентный электрон, т.е. является его донором, и превращается в положительно заряженный ион:

Cs0 -1e → Cs+.

Молекула и атом цезия

В свободном состоянии цезий существует в виде одноатомных молекул Cs. Приведем некоторые свойства, характеризующие атом и молекулу цезия:

Энергия ионизации атома, эВ

3,89

Относительная электроотрицательность

0,79

Радиус атома, нм

0,267

Сплавы цезия

Цезий используют в виде сплавов с сурьмой, кальцием, барием, алюминием и серебром в качестве фотоэлементов.

Примеры решения задач

ru.solverbook.com

Электронная конфигурация атома - Электронный учебник K-tree

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени. N - уровень L - оболочка Ml - номер орбитали Ms - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона На p-оболочке три орбитали (L=1) - шесть электронов На d-оболочке пять орбиталей (L=2) - десять электронов На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число ml

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой ml.

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку: d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения Ml=-2,Ml=-1,Ml=0, Ml=1,Ml=2.

Спиновое квантовое число ms

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается ms

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона

Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, Ml=0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Энергетические уровни с подуровнями для наглядности изображены ниже, сверху вниз расположены уровни и цветом разделены подуровни:

Здесь, сверху-вниз показаны энергетические уровни (1-7), слева-направо разделены по группам электронные подуровни (s,p,d,f), в каждой ячейке располагаются по два электрона в противоположных направлениях. Общий принцип распределения электронов такой, что энергетические подуровни заполняются в порядке суммы главного и орбитального квантовых чисел, то есть: 1S, 2S, 2P, 3S, 3P, 4S, 3D и так далее, если сумма одинакова, то сначала заполняется уровень с меньшим главным квантовым числом N.

У некоторых элементов имеются отклонения в формировании электронной конфигурации, а именно у 24Cr, 29Cu, 41Nb, 42Mo, 44Ru, 45Rh, 46Pd, 47Ag, 78Pt, 79Au

Проверьте себя, составьте электронную конфигурацию для элементов #5, #10 и #21, затем проверьте себя по таблице ниже.

№ Элемент Название Электронная конфигурация Энергетических уровней
1 H водород 1s 1 1
2 He гелий 1s 2 1
3 Li литий 1s 22s 1 2
4 Be бериллий 1s 22s 2 2
5 B бор 1s 22s 22p 1 2
6 C углерод 1s 22s 22p 2 2
7 N азот 1s 22s 22p 3 2
8 O кислород 1s 22s 22p 4 2
9 F фтор 1s 22s 22p 5 2
10 Ne неон 1s 22s 22p 6 2
11 Na натрий 1s 22s 22p 63s 1 3
12 Mg магний 1s 22s 22p 63s 2 3
13 Al алюминий 1s 22s 22p 63s 23p1 3
14 Si кремний 1s 22s 22p 63s 23p2 3
15 P фосфор 1s 22s 22p 63s 23p3 3
16 S сера 1s 22s 22p 63s 23p4 3
17 Cl хлор 1s 22s 22p 63s 23p5 3
18 Ar аргон 1s 22s 22p 63s 23p6 3
19 K калий 1s 22s 22p 63s 23p64s 1 4
20 Ca кальций 1s 22s 22p 63s 23p64s 2 4
21 Sc скандий 1s 22s 22p 63s 23p64s 23d1 4
22 Ti титан 1s 22s 22p 63s 23p64s 23d2 4
23 V ванадий 1s 22s 22p 63s 23p64s 23d3 4
24 Cr хром 1s 22s 22p 63s 23p64s 13d5 4
25 Mn марганец 1s 22s 22p 63s 23p64s 23d5 4
26 Fe железо 1s 22s 22p 63s 23p64s 23d6 4
27 Co кобальт 1s 22s 22p 63s 23p64s 23d7 4
28 Ni никель 1s 22s 22p 63s 23p64s 23d8 4
29 Cu медь 1s 22s 22p 63s 23p64s 13d10 4
30 Zn цинк 1s 22s 22p 63s 23p64s 23d10 4
31 Ga галлий 1s 22s 22p 63s 23p64s 23d104p1 4
32 Ge германий 1s 22s 22p 63s 23p64s 23d104p2 4
33 As мышьяк 1s 22s 22p 63s 23p64s 23d104p3 4
34 Se селен 1s 22s 22p 63s 23p64s 23d104p4 4
35 Br бром 1s 22s 22p 63s 23p64s 23d104p5 4
36 Kr криптон 1s 22s 22p 63s 23p64s 23d104p6 4
37 Rb рубидий 1s 22s 22p 63s 23p64s 23d104p65s1 5
38 Sr стронций 1s 22s 22p 63s 23p64s 23d104p65s2 5
39 Y иттрий 1s 22s 22p 63s 23p64s 23d104p65s24d1 5
40 Zr цирконий 1s 22s 22p 63s 23p64s 23d104p65s24d2 5
41 Nb ниобий 1s 22s 22p 63s 23p64s 23d104p65s14d4 5
42 Mo молибден 1s 22s 22p 63s 23p64s 23d104p65s14d5 5
43 Tc технеций 1s 22s 22p 63s 23p64s 23d104p65s24d5 5
44 Ru рутений 1s 22s 22p 63s 23p64s 23d104p65s14d7 5
45 Rh родий 1s 22s 22p 63s 23p64s 23d104p65s14d8 5
46 Pd палладий 1s 22s 22p 63s 23p64s 23d104p64d10 5
47 Ag серебро 1s 22s 22p 63s 23p64s 23d104p65s14d10 5
48 Cd кадмий 1s 22s 22p 63s 23p64s 23d104p65s24d10 5
49 In индий 1s 22s 22p 63s 23p64s 23d104p65s24d105p1 5
50 Sn олово 1s 22s 22p 63s 23p64s 23d104p65s24d105p2 5
51 Sb сурьма 1s 22s 22p 63s 23p64s 23d104p65s24d105p3 5
52 Te теллур 1s 22s 22p 63s 23p64s 23d104p65s24d105p4 5
53 I йод 1s 22s 22p 63s 23p64s 23d104p65s24d105p5 5
54 Xe ксенон 1s 22s 22p 63s 23p64s 23d104p65s24d105p6 5
55 Cs цезий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1 6
56 Ba барий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2 6
57 La лантан 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1 6
58 Ce церий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2 6
59 Pr празеодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3 6
60 Nd неодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4 6
61 Pm прометий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5 6
62 Sm самарий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6 6
63 Eu европий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7 6
64 Gd гадолиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1 6
65 Tb тербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9 6
66 Dy диспрозий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10 6
67 Ho гольмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11 6
68 Er эрбий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12 6
68 Tm тулий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13 6
70 Yb иттербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14 6
71 Lu лютеций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1 6
72 Hf гафний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2 6
73 Ta тантал 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3 6
74 W вольфрам 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4 6
75 Re рений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5 6
76 Os осмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6 6
77 Ir иридий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7 6
78 Pt платина 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9 6
79 Au золото 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10 6
80 Hg ртуть 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10 6
81 Tl таллий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1 6
82 Pb свинец 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2 6
83 Bi висмут 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3 6
84 Po полоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4 6
85 At астат 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5 6
86 Rn радон 1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6 6
87 Fr франций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1 7
88 Ra радий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2 7
89 Ac актиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1 7
90 Th торий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0 7
91 Pa протактиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1 7
92 U уран 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1 7
93 Np нептуний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1 7
94 Pu плутоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1 7
95 Am америций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7 7
96 Cm кюрий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1 7
97 Bk берклий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1 7
98 Cf калифорний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10 7
99 Es эйнштейний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11 7
100 Fm фермий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12 7
101 Md менделеевий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13 7
102 No нобелий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14 7
103 Lr лоуренсий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1 7
104 Rf резерфордий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2 7
105 Db дубний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3 7
106 Sg сиборгий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4 7
107 Bh борий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5 7
108 Hs хассий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6 7
109 Mt мейтнерий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7 7
110 Ds дармштадтий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d8 7
111 Rg рентгений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d9 7
112 Cn коперниций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d10 7
113 Nh нихоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p1 7
114 Fl флеровий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p2 7
115 Mc московий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p3 7
116 Lv ливерморий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p4 7
117 Ts теннесcин 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p5 7
118 Og оганесон 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p6 7
Таблица 2. Электронная конфигурация атомов

Если Вы хотите узнать, как составить электронную конфигурацию, обратитесь к статье «как написать электронную конфигурацию»

Квантовые числа электронов в атомах

k-tree.ru

особенности строения и их роль во взаимодействиях между атомами

Что происходит с атомами элементов во время химических реакций? От чего зависят свойства элементов? На оба эти вопроса можно дать один ответ: причина лежит в строении внешнего энергетического уровня атома. В нашей статье мы рассмотрим электронное строение атомов металлов и неметаллов и выясним зависимость между структурой внешнего уровня и свойствами элементов.

Особые свойства электронов

При прохождении химической реакции между молекулами двух или более реагентов происходят изменения в строении электронных оболочек атомов, тогда как их ядра остаются неизменными. Сначала ознакомимся с характеристиками электронов, находящихся на наиболее удаленных от ядра уровнях атома. Отрицательно заряженные частицы располагаются слоями на определенном расстоянии от ядра и друг от друга. Пространство вокруг ядра, где нахождение электронов наиболее возможно, называется электронной орбиталью. В ней сконденсировано около 90 % отрицательно заряженного электронного облака. Сам электрон в атоме проявляет свойство дуальности, он одновременно может вести себя и как частица, и как волна.

Правила заполнения электронной оболочки атома

Количество энергетических уровней, на которых находятся частицы, равно номеру периода, где располагается элемент. На что же указывает электронный состав? Оказалось, что количество электронов на внешнем энергетическом уровне для s- и p-элементов главных подгрупп малых и больших периодов соответствует номеру группы. Например, у атомов лития первой группы, имеющих два слоя, на внешней оболочке находится один электрон. Атомы серы содержат на последнем энергетическом уровне шесть электронов, так как элемент расположен в главной подгруппе шестой группы и т. д. Если же речь идет о d-элементах, то для них существует следующее правило: количество внешних отрицательных частиц равно 1 (у хрома и меди) или 2. Объясняется это тем, что по мере увеличения заряда ядра атомов вначале происходит заполнение внутреннего d- подуровня и внешние энергетические уровни остаются без изменений.

Почему изменяются свойства элементов малых периодов?

В периодической системе малыми считаются 1, 2, 3 и 7 периоды. Плавное изменение свойств элементов по мере возрастания ядерных зарядов, начиная от активных металлов и заканчивая инертными газами, объясняется постепенным увеличением количества электронов на внешнем уровне. Первыми элементами в таких периодах являются те, чьи атомы имеют всего один или два электрона, способные легко отрываться от ядра. В этом случае образуется положительно заряженный ион металла.

Амфотерные элементы, например, алюминий или цинк, свои внешние энергетические уровни заполняют небольшим количеством электронов (1- у цинка, 3 – у алюминия). В зависимости от условий протекания химической реакции они могут проявлять как свойства металлов, так и неметаллов. Неметаллические элементы малых периодов содержат от 4 до 7 отрицательных частиц на внешних оболочках своих атомов и завершают ее до октета, притягивая электроны других атомов. Например, неметалл с наибольшим показателем электроотрицательности – фтор, имеет на последнем слое 7 электронов и всегда забирает один электрон не только у металлов, но и у активных неметаллических элементов: кислорода, хлора, азота. Заканчиваются малые периоды, как и большие, инертными газами, чьи одноатомные молекулы имеют полностью завершенные до 8 электронов внешние энергетические уровни.

Особенности строения атомов больших периодов

Четные ряды 4, 5, и 6 периодов состоят из элементов, внешние оболочки которых вмещают всего один или два электрона. Как мы говорили ранее, у них происходит заполнение электронами d- или f- подуровней предпоследнего слоя. Обычно это - типичные металлы. Физические и химические свойства у них изменяются очень медленно. Нечетные ряды вмещают такие элементы, у которых заполняются электронами внешние энергетические уровни по следующей схеме: металлы - амфотерный элемент – неметаллы – инертный газ. Мы уже наблюдали ее проявление во всех малых периодах. Например, в нечетном ряду 4 периода медь является металлом, цинк – амфотерен, затем от галлия и до брома происходит усиление неметаллических свойств. Заканчивается период криптоном, атомы которого имеют полностью завершенную электронную оболочку.

Как объяснить деление элементов на группы?

Каждая группа – а их в короткой форме таблицы восемь, делится еще и на подгруппы, называемые главными и побочными. Такая классификация отражает различное положение электронов на внешнем энергетическом уровне атомов элементов. Оказалось, что у элементов главных подгрупп, например, лития, натрия, калия, рубидия и цезия последний электрон расположен на s-подуровне. Элементы 7 группы главной подгруппы (галогены) заполняют отрицательными частицами свой p-подуровень.

Для представителей побочных подгрупп, таких, как хром, молибден, вольфрам типичным будет наполнение электронами d-подуровня. А у элементов, входящих в семейства лантаноидов и актиноидов, накопление отрицательных зарядов происходит на f-подуровне предпоследнего энергетического уровня. Более того, номер группы, как правило, совпадает с количеством электронов, способных к образованию химических связей.

В нашей статье мы выяснили, какое строение имеют внешние энергетические уровни атомов химических элементов, и определили их роль в межатомных взаимодействиях.

fb.ru

Цезий энергии возбуждения - Справочник химика 21

    Наблюдаемые в пламенах спектры атомов относительно просты, так как при таких температурах наблюдаются спектральные линии, обусловленные переходами только с уровней с низкими энергиями возбуждения (1,5—2,5 эВ). Поэтому в методе эмиссионной фотометрии пламени применяют очень простые приборы — пламенные фотометры, в которых монохроматором являются интерференционные светофильтры, а детектором излучения — фотоэлементы. Как правило, пламенные фотометры позволяют определять несколько элементов последовательно (натрий, калий, кальций, литий). Сконструированы также одноканальные многоэлементные фотометры с прямым отсчетом, позволяющие определять до И элементов, в том числе бор (по молекулярной полосе ВО2) и цезий (по резонансному дуплету). Более совершенны пламенные фотометры, имеющие компенсационную схему, которая устраняет спектральные помехи, связанные с инструментальной ошибкой (анализаторы типа ПАЖ). [c.14]     Т—абсолютная температура газа пламени, °К. Относительное число возбужденных атомов невелико, как это можно видеть из кривых на рис. 20, на котором показано, какая часть атомов различных элементов находится в возбужденном состоянии. Даже для наиболее легко возбуждаемого элемента цезия число это не превышает 1%, для остальных же элементов с большей энергией возбуждения оно ничтожно мало. [c.53]

    Принято считать, что в пламени для наиболее легко возбуждаемого элемента цезия число возбужденных атомов не превышает 1%, а для остальных элементов, имеющих большую энергию возбуждения, оно весьма мало. [c.83]

    Энергия возбуждения первых резонансных линий щелочных металлов 1,5—2 эВ. Первые резонансные линии лития, натрия и калия расположены в видимой части спектра, а цезия и рубидия — в ИК области. [c.40]

    Атомы щелочных и щелочно-земельных металлов при сильном тепловом возбуждении испускают кванты энергии, соответствующей видимой части спектра. Поэтому при внесении солей этих металлов в пламя горелки оно окрашивается в определенный цвет солями лития — в малиново-красный, натрия — в желтый, калия — в бледно-фиолетовый, рубидия — в рубиновый, цезия — в голубой, кальция — в кирпично-красный, стронция — в карминово-красный, бария — в желто-зеленый. Это свойство солей используется в пиротехнике для осветительных ракет и бенгальских огней при этом применяют нитраты как соли, отщепляющие при нагревании О2 и этим способствующие горению. [c.398]

    Важной особенностью многоквантовых механизмов возбуждения является возможность использования суммарной энергии нескольких фотонов, хотя для каждого отдельного фотона энергия квантована в соответствии с соотношением Планка. Оптическое поглощение теперь уже зависит от интенсивности падающего излучения, т. е. закон Ламберта — Бера (разд. 2.4) не выполняется. Такое поведение наиболее понятно для многоквантового процесса возбуждения с участием виртуальных промежуточных уровней. Система, полностью прозрачная при низкой интенсивности облучения, может поглощать излучение той же длины волны, но при высокой интенсивности. Хороший пример поглощения прозрачным газом обсуждается в разд. 5.5 флуоресценция в парах цезия возбуждается интенсивным излучением, частота которого не соответствует ни одному из однофотонных переходов. [c.75]

    Щелочные металлы (а также их соединения) окрашивают пламя в характерные цвета литий — в малиновый, натрий — в желтый, калий — в фиолетовый, рубидий — в сиреневый, цезий —в фиолетово-синий. Электроны возбужденных атомов этих металлов, получив дополнительно энергию в результате нагревания, отдают ее в виде излучения квантов света.,  [c.408]

    Известно, что многие металлы обладают фотоэлектрическими свойствами. Свет, попадающий на катоды, изготовленные из этих металлов, возбуждает в цепи электрический ток. Но если в случае платины, например, для этого требуются лучи с очень малой длиной волны, то у рубидия, напротив, фотоэффект наступает под действием наиболее длинных волн видимого спектра — красных. Это значит, что для возбуждения тока в рубидиевом фотоэлементе требуются меньшие затраты энергии. В этом отношении рубидий уступает только цезию, который чувствителен даже к невидимым инфракрасным лучам. [c.164]

    Относительное число возбужденных атомов невелико. Даже для наиболее легко возбуждаемого элемента цезия это число не превышает 1 %, для остальных элементов с большей энергией Ет ОНО ничтожно мало. Поэтому становится ясным, что наблюдаемые в пламени спектральные линии атомов в основном должны появляться в результате перехода электрона на основной уровень (резонансные линии). [c.148]

    Одинакова ли энергия ионизации атома цезия и атома лития, у которого валентный электрон предварительно возбужден на б5-подуровень Ответ обосновать. [c.46]

    Так, некоторые кривые тока имеют пики, в точности соответствующие линиям главной спектральной серии цезия (рис. 38). В данном случае первоначально происходит не ионизация, а только возбуждение атома цезия, затем возбуждённый атом получает добавочное количество энергии, приводящее к завершению ступенчатой ионизации путём какого-либо другого элементарного процесса, имеющего место при взаимо- [c.121]

    С повышением давления возбуждение атомов сжимаемых веществ становится более легким. Ю. Н. Рябинин, А. С. Карпенко и А. М. Маркевич установили, что ионизация газов при высоких давлениях происходит с меньшей затратой энергии, чем при атмосферном давлении. Объясняется это тем, что на сжатие веществ затрачивается большая работа, которая при этом частично расходуется на повышение энергии атомов. Так, по расчетам Ю. Н. Ряби-нина, при сжатии щелочного металла цезия до 100 000 ат выполняется работа, почти достаточная для его ионизации. [c.52]

    Большая часть фотохимических превращений неорганических соединений связана с электронными переходами, приводящими к переносу электрона от одного иона молекулы к другому (или к растворителю). Типичным примером спектра переноса заряда (переноса электрона) в газовой фазе является сильная непрерывная полоса поглощения в парах галогенидов щелочных металлов в области 2000—2500 А, например для иодистого цезия [94]. Основное состояние иодистого цезия — преимущественно ионное, а возбужденное состояние — ковалентное (в противоположность V Л -спектру переноса заряда хлора). Более ковалентное возбужденное состояние неустойчиво (все кривые потенциальной энергии для верхних состояний диссоциативные). В результате, поглощение света приводит к образованию нейтральных атомов  [c.214]

    ГИЛ атома цезия и указаны длины волн спектральных линии, появляющихся в спектре излучения. Обычно для возбуждения атомов используются столкновения быстролетящих электронов с атомами. В электрическом разряде электроны, летящие с одного электрода на другой, получают запас энергии за счет разности потенциалов между электродами. [c.33]

    В табл. 276 приведены уровни энергий атома цезия с указанной электронной конфигурацией й значениями п[c.895]

    ООО столкновений Na+ + ITg лишь одно ведет к возбуждению атома ртути. Большое различие между минимальной энергией возбуждения и величиной /Смин наблюдается и в других случаях. Приведем еще следующий пример. При соударении быстрых ионов Li+, К+ и s+ с атомами гелия Маурер [930] наблюдал вовбуждение как линий гелия, так и линии этих ионов. При этом, например, в случае s+ + He линия гелия X 5876 А, энергия электронного возбуждения которой составляет 23,0 эв, появляется при энергии ионов цезия около 1000 эв, а линии иона s+ с близкой энергией электронного возбуждения (в частности, линия X 4603,2 А) — при энергии ионов в 7000 эв. Если в нервол случае минимальная энергия возбуждения только на 30% превышает величину К МНИ, в данном слу-чае равную 790 эв, то в случае линий s+ эта энергия превышает К ми приблизительно в 10 раз  [c.419]

    Из равенства (28.2), далее, следует, что при возбуждении данного уровня частицами различных масс, но обладающими одинаковыми прочими свойствами, например, атомами Н и О, когда величина АЕ) га остается постоянной, более легкая частица должна обладать большей эффективностью. В соответствии с этим интенсивность линии аргона К 4259 А и линии гелия X 3888 А в опытах Ганле [718] при возбуждении этих линий ударом атомов И на подъеме функции возбуждения оказывается приблизительно вдвое больше, чем при возбуждении ударом атомов О. Точно так же, вследствие пропорциональности предельной энергии величине (АЕ) , нужно ожидать, что легче будет возбуждаться тот из партнеров соударения, энергия возбуждения которого меньше. Проверка этого заключения на большом числе опытных данных показывает, что в большинстве случаев оно подтверждается [931]. Так, например, при бомбардировке гелия атомами Н и О линии гелия становятся заметными лишь при энергии быстрых частиц выше 2 кэв, в то время как линии более легко возбуждаемого водорода имеют большую интенсивность уже при энергии ниже 500 эв. При бомбардировке гелия ионами лития и натрия линии Не наблюдаются при энергии ионов ниже 1 кэв, линии Ы+ и Ка+—лишь при энергии ионов выше 20 кэв. Предыдущее заключение, однако, не оправдывайся на опыте в тех случаях, когда оба партнера соударения обладают одинаковой или близкой энергией возбуждетлия, вследствие чего на основании (28.2) нужно ожидать, что они будут возбуждаться с одинаковой вероятностью. Как мы указывали (стр. 420), при бомбардировке гелия ионами цезия линии Не, обладающие энергией возбуждения, близкой к энергии возбуждения линий Сз+, возбуждаются значительно легче линий С +. [c.427]

    Вклад сжимаемости комплексного аниона. Увеличение энергии решеток кристаллов с внешнесферными катионами малого радиуса (Ь1, N3) и сопутствующее электростатическое сжатие уменьшают в некоторой степени размеры комплексного аниона и межъядерные расстояния в нем. Изменение расстояр.ий центральный ион — лиганд в первую очередь приводит к изменению параметров молекулярных орбиталей комплексного аниона, несколько изменяются и энергии возбуждения. Теоретическое рассмотрение приводит к довольно сложной картине зависимости орбитальных токов и констант экранирования от степени участия атомных орбиталей центрального атома и лигандов в формировании молекулярных орбиталей. Но для наиболее реального случая, когда связи центральный ион — лиганд носят частично ковалентный характер, связывающие орбитали построены преимущественно из атомных орбиталей лигандов, а разрыхляющие — преимущественно из орбиталей комплексообразующего иона. В этом случае с увеличением сжатия орбитальные токи в целом возрастают. Это значит, что для комплексных фторидов и -элементов с малыми внешнесферными ионами (Ма, Ь1) имеет место дополнительный сдвиг сигнала ЯМР фтора в сторону слабых полей, причем величина этого дополнительного сдвига должна уменьшаться с уменьшением степени сжатия, осуществляемым при замещении внешнесферных катионов на самые крупные, такие как цезий. [c.31]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    Энергия фотона может быть значительно увеличена за счет двухфотонного поглощения (следует отличать от двухступенчатого поглощения см. разд. 3.9). Процессы многоквантового поглощения позволяют осуществлять те фотохимические реакции, которые на первый взгляд кажутся невозможными (хотя они вряд ли имеют значения для природных процессов). Как мы объясняли в разд. 3.9, высокая интенсивность лазерного излучения делает возможным одновременное поглощение двух фотонов, и наблюдаются процессы излучения с двухквантово-воз-бужденных уровней. Например, излучение паров цезия на переходе 920з/2- 62Рз/2 (Х = 584,7 нм) может быть возбуждено лазерным излучением с Я = 693,78 нм, хотя при нормальных условиях цези1г прозрачен для красного света этой длины волны. Однако излучение с Я = 693,78 нм соответствует точно половине энергии, требуемой для возбуждения состояния цезия [c.138]

    Следовательно, можно возбудить чисто вращательные спектры, пользуясь слабым источником энергии (например, изменяя температуру в пределах 25— 100°С), и исследовать его с помощью радиоспектроскопа или ИК-спектроскопа для далекой ИК-области, для чего требуется специальная оптика (призма из иодида цезия). Возбуждение колебательных спектров неизбеж- [c.247]

chem21.info

Цезий электронное строение - Справочник химика 21

    Составить электронные схемы строения атомов калия и цезия. Какой из этих элементов является более сильным восстановителем Почему  [c.263]

    Атомы элементов первой группы на валентной оболочке имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы и являются типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8, у другой — по 18 электронов. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в основе деления их на две подгруппы. К главной подгруппе I группы периодической системы относятся литий, натрий, калий, рубидий, цезий и франций. В предпоследнем слое у них находится по [c.387]

    Д. И. Менделеев, открывший объективный закон природы, не имел возможности вскрыть причины периодического изменения свойств элементов. Причины периодичности в изменении свойств элементов были раскрыты только с помощью теории строения атома. Эта теория показала, что в ходе развития электронных оболочек атомов (стр. 45) периодически повторяются одинаковые конфигурации внешних электронов, от которых более всего зависят химические свойства. Таким образом, периодическое изменение свойств элементов является следствием периодического возвращения электронных оболочек атомов к одним и тем же конфигурациям электронов внешнего слоя. Например, свойства самых активных щелочных металлов периодически повторяются у лития, натрия, калия, рубидия, цезия и франция потому именно, что в наружном слое их атомов периодически повторяется одноэлектронная конфигурация. Подобно этому свойства наиболее активных неметаллов — галогенов — периодически повторяются у фтора, хлора, брома, йода и астата, так как атомы их имеют по семь электронов во внешнем слое. [c.79]

    Размещение лантаноидов по группам, сделанное на основании их электронного строения, т. е. по сумме /-, d-, s-электронов вне устойчивых конфигураций, представлено в табл. 3. Цезий, имеющий один электрон на 6 -уровне, относится к I группе, барий с двумя электронами на этом же уровне — ко второй, а лантан (d s ) — к третьей. Церий с двумя электронами на внутренней незаполненной 4/-оболочке и двумя электронами на внешней б8-оболочке является элементом IV группы, празеодим (4/ 6s ) — элементом V группы, неодим (4/ 6s ) — VI группы, прометий (4/ 6s ) — [c.18]

    Строение электронных оболочек лития, рубидия и цезия следующее литий — 2, 1 рубидий — 2, 8, 18, 8, 1 цезий — 2, 8, 18, 18, 8, 1. В связи с таким строением электронных оболочек все три элемента обладают только одной валентностью — они всегда одновалентны. [c.458]

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]

    ВЫСОКИМ ДАВЛЕНИЕМ ОБРАБОТКА материалов — обработка материалов воздействием высокого статического или импульсного давления. В пром. масштабах используется с 50-х гг. 20 в. Сопровождается обычно обратимыми или необратимыми изменениями электронного строения, кристаллической структуры и св-в материалов. Часто сочетается с магн., температурным или др. воздействием. Обусловлена сжимаемостью, или объемной упругостью веществ. Поскольку с повышением давления сжимаемость вещества уменьшается, сужается и полоса значеню сжимаемости различных элементов. Так, при давлении 1 бар сжимаемость цезия в 310 раз больше сжимаемости алмаза, а при давлении 30 кбар — только в 36 раз. Если давление составляет 100 кбар, изменяется и расположение элементов на кривой сжимаемости — максимумы их сжимаемости смещаются вправо на единицу в атомном номере. При более высоких давлениях (порядка [c.221]

    Однако положительные однозарядные ионы этих элементов, в виде которых все они (кроме водорода) большей частью содержатся в соединениях, различаются по числу электронов на внешнем уровне. Ион водорода Н представляет собой ядро атома, полностью лишенное электронной оболочки ион лития имеет два электрона, ионы натрия, калия, рубидия, цезия и франция содержат на внешнем уровне по 8 электронов, а однозарядные ионы меди, серебра и золота — по 18 электронов. Различия в строении электронной оболочки ионов являются одной из причин значительного отличия свойств меди, серебра и золота (и их соединений) от свойств остальных элементов первой группы (и их соединений). [c.48]

    Такие физические свойства металлов, как удельный вес, температура плавления и кипения, твердость, зависят от индивидуальных особенностей атомов отдельных элементов их массы, заряда ядра, строения внутренних электронных слоев и т. п. Эти свойства для различных металлов часто колеблются в широких интервалах. Так, температура плавления наиболее тугоплавкого металла вольфрама равна 3410° С, цезия около 28° С, а ртуть при обычных условиях находится в л[c.235]

    Плавление не сопровождается изменением заряда 1-Ь ионов щелочных металлов, и они сохраняют внешние р -оболочки и в жидком состоянии. Поэтому плавление не приводит к полному разрушению ортогонально направленных связей, обусловленных обменным взаимодействием внешних р -оболочек, и жидкие щелочные металлы сохраняют ближний порядок, свойственный их ОЦК кристаллическим структурам. Координационные числа жидких щелочных металлов близки к 8 (табл. 41), а межатомные расстояния мало отличаются от таковых для кристаллических структур вблизи температур плавления. Структура жидких рубидия и цезия была предсказана нами на основании анализа их электронного строения [162, 212] до того, как ее определили экспериментально 1213]. [c.243]

    В частности, лантаноидное сжатие приводит к усилению связи внешних электронов у последующих элементов, т. е. усилению их неметаллических свойств. В периодической системе элементов эти отклонения свойств, обусловленные лантаноидным сжатием, должны быть отражены некоторым сдвигом франция, радия, актиния и всех актиноидов относительно цезия, бария и лантаноидов. Такое уточнение таблицы представлено на рис. 12. Оно существенно, с одной стороны, для оценки строения и свойств этих тяжелых, малоисследованных элементов, а с другой — позволяет уточнить общие закономерности влияния заполнения внутренних оболочек на энергию связи внешних электронов, т. е. на характер экранирования ядра внутренними электронами. Отсюда непосредственно вытекает заключение [c.54]

    Решение. Строение электронных оболочек атомов натрия и цезия можно представить следующим образом  [c.60]

    При полном тождестве строения внешнего электронного слоя атомы элементов I группы по строению второго снаружи электронного слоя различаются между собой атомы натрия, калия, рубидия и цезия на предпоследнем электронном слое имеют 8 электронов (у лития—2), а атомы медн, серебра и золота на том же слое содержат по 18 электронов (см. таблицы в 5 и 6 настоящей главы). Это обстоятельство оказывает большое влияние на свойства элементов I группы и лежит в основе их деления на две подгруппы 1) главную—питий, натрий, калий, рубидий и цезий, и 2) побочную— медь, серебро и золото. [c.344]

    Который из щелочных металлов является более активным натрий ли калий литий или цезий Объясните это с точки зрения электронной теории строения атома. [c.170]

    Уже известный вам Дмитрий Иванович Менделеев установил, что если расположить химические элементы в порядке возрастания их атомного веса, то наблюдается интересная закономерность свойства химических элементов окажутся в периодической зависимости от их атомного веса. В то время Менделеев почти ничего не знал о вашем внутреннем строении. Ему не было известно, что именно те элементы, которые обладают близкими свойствами, имеют сходную электронную структуру. Иначе он легко пришел бы к выводу, что раз в строении электронного слоя наблюдается определенная периодичность, то она должна быть и в свойствах элементов. Но Менделеев открыл периодический закон, не зная строения атомов, и таким образом совершил научный подвиг. Он разместил все элементы в своей знаменитой периодической таблице. Эта таблица напоминает план нашего класса. Периодическая таблица Менделеева имеет восемь столбцов. Над первым Менделеев написал Первая группа — и поставил в ряд один под другим элементы от Водорода до Франция включительно (точнее, до Цезия, так как Франций в то время еще не был известен). [c.193]

    Исследования элементов при высоких давлениях, кардинальным образом изменяющих строение и степень перекрытия внешних электронных оболочек, привели к обнаружению неизвестных ранее модификаций рубидия, цезия, бария, галлия, индия, таллия, кремния, германия, олова, свинца, сурьмы, висмута, титана, циркония и других элементов. Круг полиморфных металлов расширился настолько, что можно полагать, что в природе вообще не существует элементов, сохраняющих одну и ту же структуру в достаточно широком диапазоне давлений и температур. [c.196]

    Из этой таблицы можно, в частности, видеть, что при одинаковом электронном строении анионы обладают большими размерами, чем катионы. Если взять ряд солей типа АБ, в которых анион Б остается неизменным, а размер катиона А последовательно увеличивается, то в таком ряду при достижении определенной величины отношения радиуса А к радиусу Б может произойти изменение структуры кристаллической решетки. Так, например, случае хлоридов щелочных металлов при достижении отношения радиуса катиона к радиусу аниона, равного 0,91, кристаллическая решетка типа Na l (в которой кристаллизуются хлориды лития, натрия и калия) ме1няется на тип s l (в которой кристаллизуется хлорид цезия). [c.14]

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]

    С позиций теории строения атома легко объясняется и тот факт, что с ростом заряда ядра металлические свойства элементов в каждой группе возрастают, а неметаллические — убывают. Так, сравнивая распределение электронов по уровням в атомах фтора Р и иода I, можно отметить, что у них соответственно [Не 25 2р и [Kr]4ii "5s 5/7 т. е. по 7 электронов на внешнем уровне это указывает на сходство свойств. Однако внеи1ние электроны в атоме иода находятся дальше от ядра, чем в атоме фтора (у иода больший атомный радиус), и поэтому удерживаются слабее. По этой причине атомы иода могут отдавать электроны или, иными словами, проявлять металлические свойства, чего нельзя сказать о фторе. К аналогичному выводу о возрастании металлических свойств в группе с ростом заряда ядра приводит и сравнение, например, атомов элементов щелочных металлов лития и цезия Сз, в которых распределение электронов по уровням характеризуется, соответственно, формулами [Не]251 и [Хе]б5Ч Внешний электрон у цезия находится дальше от ядра, чем у лития (у Сз больший атомный радиус), а потому он удерживается слабее. [c.55]

    Атомы всех элементов, находящихся в первой группе, на внешнем энергетическом уровне имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы, так как они не обладают способностью ирисоединять электроны, а могут только их отдавать. Следовательно, все эти элементы являют( я типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8 электронов, у другой — по 18. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в оспове деления их на две подгруппы. К главной подгруппе первой группы периодической систем],i относятся литий, натрий, калии, рубидий, цезий и франций. В предпоследнем слое у них находится по 8 электронов (у лития два). [c.242]

    Подобно тому, как в теории протолитического равновесия сопоставлялась сила анионов-оснований, считая, по Усановичу, каждый катион кислотой, можно составить и для этого типа кислот табель о рангах. Так, в ряду катионов щелочных металлов от лития к цезию сила кислот падает, так как с увеличением ионного радиуса уменьшается напряженность электростатического поля, создаваемого ионом, и, следовательно, ослабляется его стремление вступать во взаимодействие. Из двух катионов с одинаковым строением внешней электронной оболочки, например, и a +, последний более сильная кислота, чем ион калия, так как благодаря большему заряду иона, он будет обладать большей энергией взаимодействия с одними и теми же кислотами. [c.17]

    Подгруппа 1А. Главная подгруппа первой группы периодической системы включает так называемые щелочные металлы. Из них четыре элемента относятся к членам больших периодов калий, рубидий, цезий и один из крайне неустойчивых элементов — франции. Щелочными они называются потому, что их гидроксиды являются хорошо диссоциирующими сильными основаниями — щелочами. Близость физических и химических свойств их обусловлена сходным строением валентных и следующих за ними электронных уровней их атомов. Радиусы элементов подгруппы 1А самые боль-шие в периодах, а заряды ядер самые маленькие из всех членов данного периода, поэтому внешние электроны в атомах удерживаются слабо и легко отделяются (потенциалы ионизации невелики). Из приведенных в табл. 16 данных видно заметное различие характеристик элементов подгруппы 1А малых (1—3) и больших (4 — 7-го) периодов. Резкое возрастание радиусов атомов и ионов влечет за собой соответственно скачкообразное снижение энергии ионизации (см. табл. 10) (в среднем на 1 эВ). Это ведет к увеличению восстановительных свойств, проявляемых при реакциях, и повыше- [c.280]

    Так иногда называют натрий. Это не совсем справедливо в менделеевско таблице нарастание металлических свойств происходит по мере продвижения справа налево и сверху вниз. Так что у аналогов натрия по группе — франция, рубидия, цезия, калия — металлические свойства выражены сильнее, чем у натрия. (Конечно, имеются в виду только химические свойства.) Но и у натрия есть полный комплекс металлических химических свойств. Он легко отдает свои валентные электроны (по одному на ато.м), всегда проявляет валситность 1-Ь, обладает ярко выраженными восстановптелъными свойствами. Гидроокиси типичных металлов должны быть основаниями. Гвдроокись натрия NaOH — сильная щелочь. Все это объясняется строением атома натрия, на внешней оболочке которого только один электрон, и с ним атом легко расстается. [c.182]

    Согласно Дебуру, а также П. В. Тимофееву, развившему эту теорию далее, фотоэффект со сложных катодов обусловливается не выходом из катода электронов, поглотивших энергию светового кванта, а фотоионизацией атомов цезия, адсорбированных иа сравнительно толстом слое окиси цезия. Положение границы фотоэффекта и чувствительность сложного фотокатода зависят oi строения поверхности слоя окисла, от числа имеющихся на поверхности активных точек и от напряжённости молекулярного поля в этих точках. Электроны, эмиттируемые при фотоионизации адсорбированных атомов цезия, возмещаются за счёт электронов, приходящих из серебряной подкладки через промежуточный слой окисла. Поэтому на чувствительность сложного фотокатода влияет величина электропроводности промежуточного слоя. Электропроводность слоя в свою очередь зависит от состояния этого слоя, т. е. от наличия в нём посторонних и избыточных атомов. [c.78]

    Эти нарушения последовательности заполнения электронами оболочек повторяются и служат причиной образования побочных групп в периодической системе элементов. У цезия, например, даже начата постройка шестой оболочки, когда остается еще не начатой постройка четвертой (4/) и недостроепа пятая оболочка (5с/). Заполнение подгруппы 4/ происходит у элементов от Се до 1Ь, составляющих группу редкоземельных элементов, называемых л а н т а н и д а м и, которые благодаря сходству строения внешних электронных оболочек весьма мало различаются между собой по химическим свойствам. У группы элементов, называемых актинидами, наблюдается подобная же достройка 5/ подгруппы, располон ен-ной глубоко внутри атома. [c.15]

chem21.info


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики