Неземная красота: секреты астрофотографии. Фото с любительских телескопов
Что видно в недорогой телескоп?
Многие начинающие астрономы — любители задаются двумя основными вопросами, а именно: какой телескоп выбрать и что я в него увижу.
Телескоп Levenhuk Strike 80 NG
Самый главный параметр телескопа это диаметр его объектива. Чем больше диаметр объектива телескопа, тем более слабые звезды мы увидим и тем более мелкие детали мы сможем различить на планетах и Луне, а также разделить более тесные двойные звезды. Разрешение телескопа измеряется в угловых секундах и вычисляется по следующей формуле 140/D, где D – диаметр объектива телескопа в мм. А предельно доступная звездная величина телескопа вычисляется по формуле m = 5,5+2,5lgD+2,5lgГ, где D – диаметр телескопа в мм., Г – увеличение телескопа. Также диаметр объектива определяет максимальное увеличение телескопа. Оно равно удвоенному диаметру объектива телескопа в миллиметрах. Например, телескоп с диаметром объектива 150 мм имеет максимальное полезное увеличение 300 крат. Вот от параметра диаметр объектива телескопа мы и будем исходить.
Телескоп Bresser Venus 76/700 AZ
Какого размера видны планеты в телескоп? При увеличении 100х одной угловой секунде соответствует 0.12 мм видимые с расстояния 25 см. Отсюда можно вычислить диаметр планеты видимый в телескоп с определенным увеличением. Dp=Г*0.0012*d, где Dp — диаметр планеты в мм видимой в проекции на плоскость с расстоянии до плоскости 25 см., Г — увеличение телескопа, d — диаметр планеты в угл. сек. Например, диаметр Юпитера 46 угл. сек. и с увеличением 100 крат он будет выглядеть как окружность нарисованная на бумаге диаметром 5.5 мм с расстояния 25 см.
Туманность Ориона — очень яркий и впечатляющий объект. Невооруженным глазом туманность воспринимается как неясное свечение, в бинокль видна как яркое облачко. А между прочим, размер этого «облачка» таков, что его вещества хватило бы примерно на тысячу Солнц, или более трехсот миллионов планет Земля.
Итак, в продаже (приобрести телескопы можно на сайте интернет-магазина www.4glaza.ru) встречаются телескопы от 50 мм до 250 мм и более. Также проницающая способность и разрешения зависят от схемы телескопа, в частности от наличия центрального экранирования вторичным зеркалом и его размера. В телескопах рефракторах (объектив линза) центральное экранирование отсутствует, и они дают более контрастное и детальное изображение, правда это относится к длиннофокусным телескопам рефракторам и апохроматам. В короткофокусных рефракторах-ахроматах хроматическая аберрация сведет на нет достоинства рефрактора. И таким телескопам доступны малые и средние увеличения.
Звездное скопление Плеяды — расположено в созвездии Тельца. В Плеядах около 1000 звезд, но с Земли, конечно, видны не все. Голубой ореол вокруг звезд — это туманность, в которую погружено звездное скопление. Туманность видна только вокруг самых ярких звезд Плеяды.
В теме телескопов сантиметрами измеряется только апертура и фокусное расстояние. Для всего остального есть угловые размеры. Например: Юпитер имеет видимый диаметр в 40″-60″ в зависимости от его положения относительно Земли.Обычный телескоп апертурой 60мм имеет разрешение около 2,4″ то есть грубо говоря юпитер в такой телескоп будет иметь разрешение 50/2,4=~20 «пикселей» а вот увеличением мы эти 20 пикселей приближаем-удаляем. Если приблизить слишком близко (увеличение больше 2*D, где D — диаметр апертуры в мм 60мм*2=120х) то будем изображение будет размытым и тёмным, как если бы мы использовали цифровой зум на фотокамере. Если слишком низкое — то разрешения нашего глаза не хватит различить все 20 пикселей (планета выглядит, как маленькая горошина).
Лунная поверхность. Хорошо видны кратеры. Советский луноход и американский флаг не просматривается. Чтобы их увидеть, нужен гигантский телескоп с зеркалом диаметром в сотни метров — такого на Земле пока нет.
Галактика (или туманность) Андромеды — одна из самых близких к нам галактик. Близко — понятие относительное: это около 2,52 миллиона световых лет. Из-за удаленности мы видим эту галактику такой, какой она была 2,5 миллиона лет назад. Тогда на Земле еще не было людей. Как Галактика Андромеды выглядит сейчас на самом деле, узнать невозможно.
Юпитер — его тоже можно увидеть в телескоп. Как и Венеру, Сатурн, Уран и Нептун, и многие другие космические объекты.
Что же мы можем увидеть в телескопы разных диаметров:
Рефрактор 60-70 мм, рефлектор 70-80 мм.
- Двойные звезды с разделением больше 2” – Альбирео, Мицар и т.д..
- Слабые звезды до 11,5m.
- Пятна на Солнце (только с апертурным фильтром).
- Фазы Венеры.
- На Луне кратеры диаметром 8 км.
- Полярные шапки и моря на Марсе во время Великого противостояния.
- Пояса на Юпитере и в идеальных условиях Большое Красное Пятно (БКП), четыре спутника Юпитера.
- Кольца Сатурна, щель Кассини при отличных условиях видимости, розовый пояс на диске Сатурна.
- Уран и Нептун в виде звезд.
- Крупные шаровые (например M13) и рассеянные скопления.
- Почти все объекты каталога Мессье без деталей в них.
Рефрактор 80-90 мм, рефлектор 100-120 мм, катадиоптрический 90-125 мм.
- Двойные звезды с разделением 1,5″ и более, слабые звезды до 12 зв. величины.
- Структуру солнечных пятен, грануляцию и факельные поля (только с апертурным фильтром).
- Фазы Меркурия.
- Лунные Кратеры размером около 5 км.
- Полярные шапки и моря на Марсе во время противостояний.
- Несколько дополнительных поясов на Юпитере и БКП. Тени от спутников Юпитера на диске планеты.
- Щель Кассини в кольцах Сатурна и 4-5 спутников.
- Уран и Нептун в виде маленьких дисков без деталей на них.
- Десятки шаровых скоплений, яркие шаровые скопления будут распадаться на звездную пыль по краям.
- Десятки планетарных и диффузных туманностей и все объекты каталога Мессье.
- Ярчайшие объекты из каталога NGC (у наиболее ярких и крупных объектов можно различить некоторые детали, но галактики в большинстве своем остаются туманными пятнами без деталей).
Рефрактор 100-130 мм, рефлектор или катадиоптрический 130-150 мм.
- Двойные звезды с разделением 1″ и более, слабые звезды до 13 зв. величины.
- Детали Лунных гор и кратеров размером 3-4 км.
- Можно попытаться с синим фильтром рассмотреть пятна в облаках на Венере.
- Многочисленные детали на Марсе во время противостояний.
- Подробности в поясах Юпитера.
- Облачные пояса на Сатурне.
- Множество слабых астероидов и комет.
- Сотни звездных скоплений, туманностей и галактик (у наиболее ярких галактик можно увидеть следы спиральной структуры (М33, M51)).
- Большое количество объектов каталога NGC ( у многих объектов можно разглядеть интересные подробности).
Рефрактор 150-180 мм, рефлектор или катадиоптрический 175-200 мм.
- Двойные звезды с разделением менее 1″, слабые звезды до 14 зв. величины.
- Лунные образования размером 2 км.
- Облака и пылевые бури на Марсе.
- 6-7 спутников Сатурна, можно попытаться увидеть диск Титана.
- Спицы в кольцах Сатурна при максимальном их раскрытии.
- Галилеевы спутники в виде маленьких дисков.
- Детальность изображения с такими апертурами уже определяется не возможностями оптики, а состоянием атмосферы.
- Некоторые шаровые скопления разрешаются на звезды почти до самого центра.
- Видны подробности строения многих туманностей и галактик при наблюдении от городской засветки.
Рефрактор 200 мм и более, рефлектор или катадиоптрический 250 мм и более.
- Двойные звезды с разделением до 0,5″ при идеальных условиях, звезды до 15 зв. величины и слабее.
- Лунные образования размером менее 1,5 км.
- Небольшие облака и мелкие структуры на Марсе, в редких случаях — Фобос и Деймос.
- Большое количество подробностей в атмосфере Юпитера.
- Деление Энке в кольцах Сатурна, диск Титана.
- Спутник Нептуна Тритон.
- Плутон в виде слабой звездочки.
- Предельная детальность изображений определяется состоянием атмосферы.
- Тысячи галактик, звездных скоплений и туманностей.
- Практически все объекты каталога NGC, многие из которых показывают подробности, невидимые в телескопы меньших размеров.
- У наиболее ярких туманностей наблюдаются едва заметные цвета.
Телескопы Bresser National Geographic
Как видите, даже скромный астрономический инструмент позволит Вам насладиться множеством красот ночного неба. Так что не стоит сразу гнаться за крупным инструментом, начните с небольшого телескопа. И не бойтесь, что вскоре он исчерпает свой ресурс. Поверьте, он не один год будет радовать Вас новыми объектами и новыми деталями на них. Вы будете становиться все более опытным наблюдателем, Ваши глаза научатся чувствовать более слабые объекты, а Вы сами научитесь применять различные приемы из арсенала наблюдателя, использовать специальные фильтры и т.д.
Похожие статьи:
http://vsenovoe.info/chto-vidno-v-nedorogoy-teleskop/http://vsenovoe.info/wp-content/images/2014/11/chto_mozhno_yvidet_v_teleskop.jpghttp://vsenovoe.info/wp-content/images/2014/11/chto_mozhno_yvidet_v_teleskop-250x165.jpg2017-01-14T03:16:27+00:00RuslanКосмосКосмосМногие начинающие астрономы - любители задаются двумя основными вопросами, а именно: какой телескоп выбрать и что я в него увижу. Самый главный параметр телескопа это диаметр его объектива. Чем больше диаметр объектива телескопа, тем более слабые звезды мы увидим и тем более мелкие детали мы сможем различить на планетах и...
vsenovoe.info
Фотографии космоса (фото звезд). По технике съемки астрофотография существенно отличается от обычной «земной» фотографии. Большинство астрономических объектов очень далеки от Земли, и делая фото звезд.
12 апреля в России отмечается День космонавтики. Фотографам повезло — для них космос не так далек, как для других людей: современная техника позволяет снимать удивительные космические пейзажи даже любителям. К празднику мы подготовили для вас материал с советами по астросъемке.
По технике съемки астрофотография существенно отличается от обычной «земной» фотографии. Большинство астрономических объектов очень далеки от Земли, и, делая фото звезд, нужно помнить, что они имеют небольшие видимые (угловые) размеры, а свет, доходящий от них до земного наблюдателя, очень слаб (правда, имеется и несколько относительно близких и ярких объектов — Солнце, Луна, планеты Солнечной системы — их фотосъемка имеет несколько иную специфику, которой мы здесь касаться не будем).
Дефицит света вынуждает астрофотографов использовать крупногабаритную оптику — телескопы с диаметрами объективов от 80 до 400 мм (наиболее популярный у любителей диапазон), а иногда и больше, и с фокусными расстояниями от полуметра до нескольких метров. Однако и этого мало — чтобы накопить побольше света, затвор камеры приходится оставлять открытым на длительное время: выдержки одиночных кадров (так называемые субэкспозиции) достигают десятков минут, а поскольку таких кадров снимается несколько, время экспонирования одного объекта доходит до нескольких часов!
Созвездие Орион. Фото: Procy
Наиболее «продвинутые» любители астрофотографии применяют выпускаемые зарубежными фирмами специализированные камеры для съемки звезд, снабженные малошумящими матрицами и термоэлектрическими холодильниками, но и с обычными цифровыми зеркальными камерами многие любители получают неплохие результаты. Популярна, например, оказавшаяся очень удачной для этих целей модель Canon EOS 350D, которую, впрочем, обычно используют после небольшой доработки — замены ИК-блокирующего фильтра...
Центр Млечного пути. Фото: Stefano Garau
Из сказанного уже очевидно: нести на себе телескоп, весящий, зачастую, не один десяток килограммов, обычный фотоштатив неспособен. Однако главное в другом — наша Земля вращается, и телескоп необходимо в течение всей экспозиции постоянно поворачивать строго на тот же угол в противоположном направлении, не допуская ни малейшего «смаза»! Поэтому штативы фотографических телескопов (которые в астрономии принято называть «монтировками») не только массивны и прочны; они представляют собой довольно сложные изделия точной механики, снабженные электродвигателями и соответствующей управляющей электроникой.
Фото: Павел Бахтинов. Все снимки сделаны телескопом системы Максутова-Кассегрена, диаметр объектива — 200 мм, фокусное расстояние — 1600 мм. Фотоаппарат Canon EOS 350D, время экспозиции разных объектов — от 1 до 2,8 часов.
Впрочем, требуемая точность сопровождения объекта телескопом (порядка одной угловой секунды) столь высока, что решить задачу чисто механическими средствами все равно затруднительно. В последнее время всеобщее распространение получило так называемое автоматическое гидирование: небольшая вспомогательная камера непрерывно следит за выбранной рядом с фотографируемым объектом ведущей звездой, малейшие смещения изображения анализируются компьютером (либо специальным автономным прибором), который выдает корректирующие команды на двигатели монтировки.
Туманность Гантель. Фото: Vlastimil Vojacek
Кроме перечисленного оборудования, в распоряжении астрофотографа часто имеется еще множество вспомогательных систем и устройств: оптические искатели и компьютеризованные системы для наведения на объект, электрические фокусировочные устройства, автоматы смены фильтров, системы вентиляции для выравнивания температуры оптики, устройства подогрева для борьбы с росой, и другие.
Программная обработка отснятого материала также имеет свою специфику: первым делом производится калибровка, позволяющая исключить систематическую составляющую темнового тока и неравномерность чувствительности пикселей матрицы, компенсировать виньетирование в оптике и следы от попавшей на матрицу пыли (для чего еще во время «фотосессии» наряду с объектом снимается также комплект калибровочных кадров). Другая особенность обработки — сложение серии субэкспозиций с использованием специальных алгоритмов, позволяющих устранить ряд дефектов одиночных кадров (таких, как «горячие» пиксели, следы космических лучей и т.п.). Результат всех этих мер — итоговый снимок получается многократно менее шумным, чем «сырой» отснятый материал.
Галактика Андромеды. Фото: Cristian Cestaro
Мы лишь вкратце коснулись технических средств и приемов, необходимых астрофотографу-любителю для получения снимков современного уровня. Добавлю, что уровень этот весьма высок: фотографии, сравнимые по качеству с получаемыми сейчас любителями на их небольших телескопах, еще пару десятилетий назад можно было сделать лишь на крупных профессиональных инструментах, а многие детали слабых объектов, отлично проработанные на любительских снимках, невозможно увидеть глазом в окуляр, даже если бы удалось наблюдать их на крупнейших телескопах мира. Увидеть невидимое — прекрасный стимул для занятий любительской астрофотографией!
rosphoto.com
Телескоп | Луна, планеты и их спутники | Звезды | Туманности, галактики и звездные скопления |
60-70мм рефрактор, увеличение от 25 до125х. | Пятна на солнце (обязательно наличие солнечного фильтра), фазы Венеры, Лунные кратеры диаметром 7-10 км, облачные полосы на Юпитере и 4 его спутника, кольца Сатурна и при хороших условиях щель Кассини, Уран и Нептун в виде маленьких зеленоватых звезд. | Двойные звезды, расстояние между которыми больше 2 arc секунд, предельно доступная звездная величина 11,5. | Большие шаровые звездные скопления, яркие туманности. Фактически, в хороших условиях наблюдения такому инструменту доступны все объекты Мессье. |
80-90мм рефрактор, 100-115мм рефлектор,увеличение от 15 до 250х | Структура солнечных пятен, фазы Меркурия, Лунные борозды и кратеры диаметром от 5.5 км, полярные шапки на Марсе, а также материки в виде темных пятен во время великих противостояний, дополнительные полосы на Юпитере, тени от его спутников на поверхности, Щель Кассини в кольцах Сатурна видна постоянно, плюс 5 его спутников, Уран и Нептун в виде крошечных дисков. | Двойные звезды, расстояние между которыми больше 1.5 arc секунд, предельно доступная звездная величина 12. | Несколько десятков шаровых скоплений, диффузные и планетарные туманности, галактики. Все объекты Мессье, наиболее яркие NGC при хороших условиях, также доступны детали структуры многих туманностей, но галактики остаются невыразительными серыми пятнами. |
100-125мм рефрактор, 150мм рефлектор, увеличение от 30 до 300х | Множество образований на луне, цирки, борозды, кратеры диаметром от 3 км, больше темных пятен (материков) на Марсе, подробности в строении облаков Юпитера, полосы облаков на Сатурне, множество слабых комет и астероидов | Двойные звезды, расстояние между которыми больше 1 arc секунд (при хороших условиях), предельно доступная звездная величина 13. | Сотни звездных скоплений, туманностей, галактик (в некоторых с намеками на спиральную структуру), многие объекты каталога NGC/IC при хороших условиях. Структура туманностей и звездных скоплений. |
150-175мм рефрактор, 200мм рефлектор, 175-225мм зеркально-линзовый телескоп, увеличение от 50 до 400х | Лунные образования менее 1.8 км в диаметре, большие облака и пылевые бури на Марсе, 6-7 спутников Сатурна, при большом увеличении 4 самых ярких спутника Юпитера видны в виде крошечных дисков, множество слабых астероидов в виде маленьких звезд. | Двойные звезды, расстояние между которыми меньше 1 arc секунд (при хороших условиях), предельно доступная звездная величина 14. | Многие шаровые скопления распадаются на отдельные звезды до самого центра, множество деталей строения туманностей, видна структура многих галактик. |
250 мм (и больше) рефлектор и зеркально-линзовый телескоп | Чаще всего атмосферные помехи не позволяют увидеть больше деталей объектов Солнечной системы даже при увеличении апертуры телескопа. Но в период, когда атмосфера прозрачная и спокойная, видны детали лунной поверхности диаметром менее 1.5 км, мелкие детали на поверхности Марса, также иногда удается увидеть его спутники - Фобос и Деймос, тонкие структуры облачного покрова Юпитера, деление Энке в кольцах Сатурна, спутник Нептуна Тритон, Плутон может быть заметен в виде маленькой звездочки. | Двойные звезды, расстояние между которыми 0.5 arc секунд (при хороших условиях), предельно доступная звездная величина 14,5 (и выше). | Тысячи шаровых и рассеянных звездных скоплений; фактически полностью доступен каталог NGC/IC; подробности строения галактик и туманностей, не различимые при использовании более слабых инструментов; у некоторых объектов заметен цвет. |
www.4glaza.ru
Путешествие по вселенной с телескопом Хаббл (17 фото)
Телескоп Хаббл продолжает удивлять жителей нашей планеты снимками новых миров, попавших к нему в объектив.Галактика Сомбреро
Туманность Киля
Тени от трех лун Юпитера
След от взрыва сверхновой звезды
Столпы мироздания
Шторм из газов в туманности Омега
Галактика Черный глаз
Скопление галактик находящееся в 15000 световых лет от Земли
Звездные кластеры
Туманность Краба
Пыль и газ вокруг красного супергиганта V838
Скопление звезд в ядре Омеги Центавры
Гигантская мозаика Крабовидной Туманности
Спиральная галактика NGC 3982
Огромное скопление ранних галактик
"Космический жемчуг" окружает взрывающуюся звезду
Спиральная галактика NGC 2841
Источник: trasyy.livejournal.comfishki.net
IT-World: Как снимать через телескоп
IT ExpertКак это сделатьСам себе админ
Ольга Ларина | 17.03.2014Как подобрать телескоп
Можно ли подключить компакт/системную камеру
Вы когда-нибудь пробовали сфотографировать Луну или звездное небо? Если вы при этом использовали обычный фотоаппарат с небольшим зумом или камеру мобильного устройства, то снимок, скорее всего, получился менее впечатляющим, чем изображение, видимое невооруженным глазом. Про то, чтобы снимать скопления звезд или галактики и речи не идет. Все дело в объективе.
Как подобрать телескоп
Идеальные объективы для фотосъемки небесных тел – это телескопы. Они обладают подходящими фокусными расстояниями и сконструированы так, чтобы вносить минимум искажений. Любительские телескопы различаются, прежде всего, оптической системой и фокусным расстоянием. Для фотографии подойдет любая из систем: зеркальная (рефлектор), линзовая (рефрактор) и зеркально-линзовая.
Последняя предпочтительнее: телескоп с такой конструкцией компактен, дает изображение хорошего качества, в нем присутствуют элементы для устранения явных дефектов картинки вроде хроматических аберраций. По зеркально-линзовой оптической системе сделаны некоторые фотообъективы с фокусными расстояниями 500 и 1000 мм.
По-своему хороши и рефлекторы: это самая простая из всех конструкций. Она вообще не содержит линз, чем обусловлены, с одной стороны, минимальные искажения и светопотери, а с другой – относительно низкая цена. Свойство зеркального телескопа «переворачивать» изображение в случае астрофотографии не будет проблемой.
От фокусного расстояния зависит масштаб изображения, которое вы получите на снимке. Чем оно больше, тем выше кратность вашего «объектива». Если при наблюдении звезд увеличение корректируется окуляром, то в фотосъемке окуляр не участвует. Фокусные расстояния от 500 мм уже вполне подходят для астрофотографии. Телескопы с фокусными расстояниями от 1000 мм и более навести сложнее. Зато и фотографировать можно более далекие и незаметные объекты.
Чем больше диаметр трубы телескопа, тем выше светосила «объектива». Для того чтобы сфотографировать часть луны, подойдет даже телескоп с апертурой около 50 мм. Большие значения диаметра позволят фотографировать менее яркие и контрастные объекты вроде туманностей и скоплений галактик.
Желательно приобретать телескоп в комплекте с треногой-монтировкой. Многие фотографии небесных объектов делаются на длинных выдержках, а из-за вращения Земли выбранный участок неба постоянно будет смещаться относительно наблюдателя. Поэтому нелишним будет механизм отслеживания объекта. Данная функция имеется практически во всех компьютеризированных монтировках, даже самых простых. Иногда она реализуется при помощи электропривода, который устанавливается на механическую экваториальную монтировку и вращает телескоп вокруг выбранной оси. Азимутальная монтировка и тем более обычный фото- или видеоштатив не предназначены для длительного и равномерного ведения небесных тел.
T-кольцо для зеркалок Canon
Универсальный T-адаптер
Конструкция в сборе
Можно ли подключить компакт/системную камеру
Системная камера или фотоаппарат со съемным объективом соединяются с телескопом практически так же, как с обычной фотооптикой. В общем случае понадобятся две недорогие детали: универсальный Т-адаптер для крепления к окулярному узлу (1,25 или 2 дюйма) и переходник на нужный байонет. Таким образом можно присоединить любую цифровую или пленочную камеру.
С компактными камерами дело обстоит и сложнее, и проще одновременно. Переходники для них существуют, но при подборе важен не бренд фотоаппарата, а габариты. Вот почему выбирать адаптер лучше с камерой, учитывая, насколько далеко выдвигаются линзы при зумировании и фокусировке. Различных конструкций много, но наиболее удобна состоящая из площадки с винтом для камеры и регулируемого крепления на окулярный узел.
Выводы
Астрофотография способна зафиксировать то, чего не увидеть в телескоп глазами. Для нее требуется не так много оборудования. Фото Луны можно получить через окно собственной квартиры даже при минимальной подготовке. Для съемки более сложных и интересных объектов понадобится терпение, время, календари, прогноз погоды и поездки за город. Однако трудно придумать более интересный способ оторваться от суеты и получить необычные фотографии.
Ключевые слова: цифровая фотокамера
Журнал IT-Expert № 03/2014 [ PDF ] [ Подписка на журнал ]
Об авторах
Ольга Ларина
Журналист, фотограф-репортер, специалист по оптике, фототехнике и освещению. В свободное время преподает детям занимательную физику и путешествует по местам, где не ступала нога разумного человека. «Люблю роботов. В детстве хотела быть космонавтом».
www.it-world.ru
| Главная » Статьи и полезные материалы » Телескопы » Статьи » Что можно разглядеть в телескоп Цветные и яркие фотографии галактик, планет и звездных скоплений способны заворожить любого, кто неравнодушен к космосу и изучению Вселенной. И многие из нас, вдохновившись опытом астрофотографов, захотят и сами испробовать это увлекательное хобби. С одной стороны, все довольно просто: здесь не нужно специальных навыков или долгих тренировок, как при катании на коньках. Купил себе телескоп, нужный объектив, дождался ночи – и можно приступать. Но на самом деле не все так просто. Многим из нас кажется, что как только мы направим трубу телескопа на ночное небо, отовсюду так и будут выскакивать разноцветные планеты размером с футбольный мяч, многочисленные звездные скопления и даже целые галактики. Как в кино. А может, перед вами сразу пролетит комета и помашет вам сияющим хвостом? Увы, нет. Реальность гораздо прозаичнее. Тем не менее, при правильном использовании телескопа вы получите от просмотра космических объектов море приятных эмоций и впечатлений. Для начала давайте попробуем разобраться, как работает телескоп. Во-первых, способность приближать отдаленные объекты – увеличение телескопа – имеет очень посредственное отношение к тому, какую картинку вы в нем увидите. Даже на самом дешевом телескопе можно добиться чуть ли не любого увеличения, но это не означает, что вы сможете что-то разглядеть. Главная характеристика телескопа – это его разрешение, или же способность оптического прибора нарисовать в фокусе две близко расположенные детали. Для наглядности представьте камеру телефона. Помните старенькие Nokia с камерами 1–2 мегапикселя? А теперь сравните их с камерами на современных айфонах. Вроде бы, и там и там камера. И вы один и тот же. И помещаетесь в кадр одинаково хорошо. И приблизить можно, и удалить. Но фотографии совершенно разные: одна тусклая, размытая, совсем без деталей. А на другой, красивой и яркой, видно даже кончики ресниц. Все дело в разрешении. То же справедливо и для телескопа. Представьте, что телескоп – это «камера» вашего глаза. И если вы купите дешевую и простую «камеру», то сможете четко видеть объекты увеличенные, например, в 70 раз. Если будете увеличивать дальше, они станут тусклыми и размытыми. А если у вас хорошая, дорогая камера, вы сможете получать увеличение и до 500 раз, не теряя качества картинки. При этом размер объектов будет одинаковым, как и размер вашего лица на обеих фотографиях в примере про телефон. Разрешение измеряют в угловых секундах (это всего лишь 0,00028 градуса). Чем больше диаметр объектива, тем лучше разрешение и тем более далекие объекты вы сможете разглядеть. Чтобы изображение было максимально четким и резким, в идеале увеличение должно быть не больше, чем диаметр объектива в миллиметрах. Например, для стократного увеличения понадобится объектив диаметром 100 мм. Некоторые используют для такого диаметра увеличения в 1,5–2 раза больше, если качество объектива и атмосферные условия позволяют. Больше этих значений увеличивать не стоит. Вам, наверное, не терпится узнать, что можно увидеть в телескоп. Мы расскажем вам об этом и ответим на частые вопросы, которые возникают у начинающих астрономов. Для начала давайте развеем несколько популярных мифов: Я смогу увидеть искусственный спутник? Нет, они двигаются слишком быстро. Вы вряд ли сможете поймать спутник «на прицел». Смогу ли я увидеть звезду в телескоп? Увидеть – да, разглядеть – нет. Единственная звезда, которую вы сможете разглядеть, – это Солнце. Ну а если вы надеетесь подробно рассмотреть звездные диски и узнать, чем звезды в созвездии Большой Медведицы отличаются от звезд в Малой – увы, не получится. Самая близкая к нам звезда, Проксима Центавра, в 7 раз меньше Солнца и находится на расстоянии 4 световых лет. Для того чтобы ее увидеть, вам понадобился бы телескоп с зеркалом диаметром 140 м, что невозможно в земных условиях. Самый большой из существующих на данный момент оптических телескопов, Большой Канарский телескоп (Gran Telescopio Canarias), имеет диаметр зеркала всего 10,4 метра. Поэтому в ближайшем будущем мы сможем увидеть звезды только как светящиеся размытые пятнышки, окруженные концентрическими колечками. А следы первого человека на Луне? Американский флаг? Луноход? Нет, нет и нет. Почему же мы видим целые галактики, находящиеся так далеко от нас, но не можем разглядеть предметы, расположенные на Луне, совсем рядом с нами? По той же самой причине, что и далекие звезды. Разрешающая способность любого оптического телескопа слишком мала, чтобы разглядеть такие маленькие объекты, хотя они и находятся на гораздо более близком расстоянии. Используя тот же телескоп Gran Telescopio Canarias, различить объекты такого размера можно на максимальном расстоянии в 10 тыс. км. А Луна удалена от нас на целых 380 тыс. км. Поэтому самый маленький объект, который можно на ней рассмотреть, должен быть размером не меньше 20 м. Кроме того, галактики светятся и выделяются на темном фоне космического пространства, а предметы, оставленные на Луне, – нет. Они не дают никакого контраста, и максимум, что мы смогли бы там разглядеть, – слабую тень. «Зачем же мне тогда телескоп?!» – разочарованно спросите вы и топнете ногой. Не торопитесь отчаиваться. Есть масса удивительных, фантастических по своей красоте вещей, которые вы можете наблюдать в телескоп. 1. Луна Луна – единственный спутник Земли и прекрасный объект для наблюдений. Даже небольшого телескопа будет достаточно, чтобы рассмотреть ее многочисленные кратеры, расщелины, моря и борозды. При увеличениях от 100 крат она даже не будет помещаться в поле зрения вашего телескопа. Вам придется рассматривать ее по частям. А самое интересное – вы можете наблюдать Луну хоть каждую ночь, если позволяет погода. В зависимости от изменения фаз Луны вы сможете разглядеть все больше и больше подробностей. Фотография сделана астрономом-любителем Владимиром Суворовым для сайта www.4glaza.ru 2. Солнце Вот она, та единственная звезда, которую мы с вами можем разглядеть в телескоп. Но не торопитесь! Перед тем как наблюдать Солнце, обязательно (!) купите надежный солнечный фильтр, а то рассматривать его будет уже нечем. Никаких самодельных пленок, закопченных стекол и дискет! Поберегите свои глаза! Солнце можно наблюдать только в специальный, профессионально изготовленный солнечный фильтр. Иначе зрение можно безвозвратно повредить – вплоть до полной слепоты. Хватит всего одного раза, к сожалению. Помните, что искатель при наблюдении Солнца надо закрыть крышкой или снять – без солнечного фильтра смотреть на Солнце в искатель не менее опасно, чем в трубу телескопа. Купив солнечный фильтр и надежно закрепив его на трубе телескопа, вы сможете приступать к наблюдениям. Даже в самый маленький телескоп получится разглядеть солнечные пятна – темные пятна на яркой поверхности Солнца. Солнце вращается с периодичностью в 25 суток, и наблюдая за перемещениями пятен каждый день, вы сможете увидеть его вращение. Солнце – это единственный астрономический объект, который можно наблюдать днем. 3. Планеты В телескоп можно увидеть и планеты нашей Солнечной системы. Они не будут выглядеть такими большими и яркими, как на фотографиях с космических аппаратов, пролетавших рядом с ними. Скорее, планеты будут похожи на светящиеся горошинки. Например, Меркурий при рассмотрении в небольшие телескопы будет выглядеть как звездочка. Если использовать телескоп с бОльшим диаметром, у Меркурия можно будет разглядеть фазу – небольшой «серпик». Самый яркий объект на небе после Солнца и Луны – это Венера, ее еще называют утренней звездой. Иногда вы даже можете видеть ее днем невооруженным взглядом. Рассмотреть какие-либо детали на Венере невозможно, потому что она покрыта плотной непрозрачной атмосферой. Но можно наблюдать фазы, подобные лунным. Марс же даже в крупный телескоп виден как маленький кружочек, поэтому миф о том, что раз в год его можно видеть на небе как огромный красный диск, размером с две Луны, – это и правда всего лишь миф. Во время противостояний, когда расстояние между Марсом и Землей минимальное, на планете можно разглядеть темные пятна, которые называют морями. Сатурн вас точно не разочарует. Это, пожалуй, самая красивая планета. Кольцо можно заметить даже в самый маленький телескоп. Лучше всего наблюдать Сатурн в телескопы диаметром 200 мм и более. Тогда вы сможете рассмотреть его спутники, главное разделение между кольцами (щель Кассини) и облачные пояса. Юпитер, с которого и началась история астрономических наблюдений, имеет немного сплюснутый вид из-за быстрого вращения вокруг своей оси. Даже с небольшим телескопом можно увидеть две полосы на диске планеты – это облачные пояса. Если рассматривать Юпитер в телескоп побольше, будет видно 5–6 полос. Виден и знаменитый гигантский вихрь в виде красного пятна. А еще можно заметить четыре галилеевских спутника (Ио, Европа, Ганимед, Каллисто), которые отбрасывают на Юпитер свои тени, когда проходят перед диском планеты. Уран и Нептун даже в самые крупные телескопы будут видны как голубовато-зеленые светящиеся горошинки. 4. Галактики Каждая галактика состоит из миллиардов звезд. В телескоп они видны как небольшие бесцветные пятнышки. При достаточно большом увеличении можно рассмотреть их форму и спиральные рукава. Наверняка вы видели в интернете много красочных фото того, что можно увидеть в телескоп. В том числе и множество красивых цветных фотографий галактик, полученных с помощью электронных камер. Дело в том, что эти фотографии сделаны с большой выдержкой, когда в матрице фотоаппарата накапливается свет. В результате они получаются такими яркими. А наш глаз не способен делать длинную экспозицию, поэтому большинство космических объектов мы видим черно-белыми. Туманность Андромеды – одна из ближайших к нам галактик. И даже она находится на расстоянии 2,5 млн световых лет. Из-за ее большой удаленности свет идет до нас очень долго, и сейчас мы видим лишь то, как галактика выглядела 2,5 млн лет назад, когда на Земле еще не было людей. Фотография сделана астрономом-любителем Ричардом Флинном (США) 5. Звездные скопления Звездные скопления, или плеяды звезд, бывают шаровые и рассеянные. Все звезды скопления связаны между собой силой гравитации и движутся как единое целое в гравитационном поле галактики. Рассеянные скопления обычно не имеют определенной формы или заметной концентрации к центру. Одно из самых известных рассеянных скоплений – это плеяды в созвездии Тельца. Рассеянные плеяды будут видны как более или менее равномерные кучки звезд. А шаровые выглядят как круглые пятнышки, которые при диаметре телескопа от 150 мм будут распадаться на звезды. Они похожи на рой пчел: чем ближе к центру, тем более плотно они расположены друг к другу. Фотография сделана астрономом-любителем Ричардом Флинном (США) 6. Двойные звезды Вокруг звезд могут вращаться не только планеты (как в нашей Солнечной системе), но и другие звезды. Такие пары или небольшие скопления звезд называют двойными или кратными. Хотя подробно разглядеть звездные диски, как мы уже сказали, у вас не получится, двойные звезды, несомненно, стоят вашего внимания. Часто они бывают разных цветов – например, одна звезда желтая, другая красная или голубая. Вы можете наблюдать эти маленькие сияющие огоньки даже в небольшой телескоп или бинокль. Одна из красивейших двойных звезд – Альбирео в созвездии Лебедя. 7. Туманности Туманности, как и галактики, нужно наблюдать на очень темном небе. В городской засветке вам вряд ли удастся что-то подробно рассмотреть, лучше выезжать подальше на природу. Туманности вы тоже увидите только черно-белыми, по той же причине – наш глаз не способен накапливать свет и нечувствителен к цветам в темноте. Представьте, что вы находитесь в темной комнате. Посмотрите на предметы вокруг, они все будут в разных оттенках серого цвета. Ваши глаза переключатся из режима «цветочувствительности» в режим «светочувствительности». Чтобы рассмотреть туманность в деталях, вам понадобится телескоп диаметром не менее 200 мм. Но даже с небольшим телескопом вы сможете увидеть Туманность Ориона, Кольцо в созвездии Лиры, Туманность Гантель в созвездии Лисички и многие другие. Фотография сделана астрономом-любителем Ричардом Флинном (США) 8. Кометы Кометы появляются на ночном небе много раз в год. Достаточно только знать, где и когда их искать (для этого неплохо бы обзавестись календарем астрономических явлений). Как туманности и галактики, кометы видны как небольшие светящиеся пятнышки, но с хвостиками. Яркие кометы появляются гораздо реже, и о таких событиях говорят во всех новостях, посвященных астрономии, поэтому вы их вряд ли пропустите. 9. Наземные объекты Телескоп можно использовать не только по прямому назначению, но и как большую подзорную трубу. Хотите увидеть домик далеко на вершине горы? Или уезжающий вдаль поезд? Разглядеть надпись на билборде далеко от вас? Все это вы можете увидеть в телескоп. Помните, что астрономические телескопы, как правило, дают перевернутое изображение. Поэтому для наземных наблюдений вам дополнительно понадобится специальная оборачивающая призма. Вот мы и рассказали вам о том, что можно разглядеть в телескоп. Конечно, сначала не все будет получаться, нужен определенный навык. Но чем больше вы практикуетесь, пробуете разные телескопы, насадки, фильтры, тем больше красочных и разнообразных объектов вы сможете увидеть. А при желании и сфотографировать. И не думайте, что для хорошего результата обязательно нужен дорогой телескоп. Опытный любитель с небольшим телескопом увидит гораздо больше, чем новичок с кучей дорогой оптической техники. Астрономия и астрофотография – это увлекательные хобби, которое имеют множество последователей по всему миру. Выезжайте на природу, забирайтесь на крышу своего дома, берите с собой друзей, делитесь с ними фото того, что видно в телескоп, путешествуйте по миру с телескопом – ваши возможности ограничены только вашей собственной фантазией. 4glaza.ruАвгуст 2017 Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru. Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии: Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения: Все об основах астрономии и «космических» объектах:
|
www.4glaza.ru
Наблюдение с астровидеокамерами - Astrophotography A to Z
Несколько лет назад приближение очередного дня рождения породило во мне философские настроения. Не только о жизни в целом, но и о любительской астрономии. Насколько далеко я могу заглянуть? Что на самом деле находится в глубоком космосе? Я наблюдал много удивительных объектов, но чувствовал, что это лишь верхушка айсберга. Мне не хотелось смотреть на одни и те же старые кластеры, туманности и галактики — я хотел копнуть поглубже и увидеть, что лежит за яркими жемчужинами.
Астровидеонаблюдение стало популярным способом наслаждаться астрономией. Детальные виды таких целей, как туманность Лагуна, доступны при использовании скромного оборудования в не самой идеальной местности.
Род Моллис
Как же мне это сделать? Например, визуально с помощью большого телескопа. Любители с 20-, 30- и даже 40-дюймовыми добсоновскими «ведрами» уже давно не редкость. Проблема этой идеи в том, что мне нужно было бы ворочать эту громадину каждый раз, как захотелось понаблюдать. Новаторские решения сделали большие любительские телескопы легче, чем когда-либо, но маленьким можно сделать только 25-дюймовый Ньютон. А я давным-давно решил, что не позволю моему телескопу диктовать выбор транспортного средства.
А что насчет астрофотографии? Пару раз я потерпел неудачу на этом пути, снимая на фотопленку, ПЗС-камеры и цифрозеркалки. Мне нравится фотографировать небо, но это не совсем то, что я подразумевал. Хорошо поработать с традиционной камерой — это значит сосредоточиться на одном или двух объектах за вечер. А с учетом местной погоды это означает, что я мог бы «увидеть» восемь или десять новых объектов за год. Я хотел выйти за эти рамки в своих исследованиях.
Потом я вспомнил о видео. Немного поэкспериментировал, снимая Луну и планеты с помощью своего камкордера (пишущей видеокамеры). Результаты мне понравились, но запечатлеть тусклые объекты не получилось. Стандартная экспозиция видеокамеры дает недостаточно времени, чтобы накопить свет от далекой галактики. Я задумался, а что будет, если я сумею добиться более длинной выдержки с видеокамерой?
Астровидеонаблюдение не предназначено для создания сногсшибательных астрофото. Его основная цель — просто выявить слабые объекты на видеомониторе или экране ноутбука. Данные изображения M27 (слева) и M51 были зарегистрированы за 15 и 28 секунд соответственно, в 8-дюймовый телескоп Celestron C8 системы Шмидта-Кассегрена.
Род Моллис
Долго раздумывать не пришлось. Некоторые из моих друзей приняли на вооружение «астровидео», как они его называют, и регулярно ловят видеокамерами самые тусклые объекты. Они рассматривают их в режиме реального времени, без компьютера — просто камера и монитор.
Еще больше соблазняло то, что они делают это в засвеченной местности! Мои приятели использовали специальные камеры MallinCam (mallincam.com), Cosmo-Logic Systems (ранее StellaCam, cosmologicsystems.com), а также телескопы и бинокли Orion (oriontelescopes.com). У всех этих камер есть кое-что общее, что позволяет им улавливать объекты глубокого космоса.
Важнейшим отличием астрономических видеокамер от пишущих (камкордеров) является их способность обеспечивать длительные экспозиции. Те, что подешевле, допускают выдержку 5–10 секунд. Казалось бы, немного, но этого достаточно, чтобы выявить на удивление тусклые объекты. Моя первая астрономическая видеокамера была ограничена 10-секундной экспозицией, но без труда показывала галактики 15-й величины с 8-дюймовым телескопом.
Снабдив свое наблюдательное устройство астровидеокамерой, вы увеличите апертуру телескопа практически втрое. Этот 22-дюймовый Добсон Starstructure в сочетании с камерой MallinCam Xtreme, как правило, обнаруживает галактики тусклее обозначенных в популярных звездных атласах.
Род Моллис
Оказалось, что мне нравится экспериментировать с астровидео. Это было похоже на визуальное наблюдение — не то что пыхтеть над ПЗС-камерой и компьютером. Видеокамеры начинают новую экспозицию, как только завершена предыдущая. Когда каждые 10 секунд на экране автоматически сменяется кадр, кажется, будто наблюдаешь объекты в реальном времени. Дополнительным преимуществом стала хорошая работа камеры в моей неидеальной местности, благодаря широкому динамическому диапазону ее ПЗС-детектора.
Однако что действительно воодушевило меня, так это способность астровидео раскрывать тусклое и далекое. Как глубоко можно зайти? Считается, что астровидеокамера умножает апертуру телескопа в три раза, но эта оценка может оказаться консервативной. Я неоднократно наблюдал в большие телескопы тусклые объекты вроде туманности Конская Голова, но даже 42-дюймовый инструмент никогда не обеспечивал в окуляре того уровня детализации, который наблюдался в 11-дюймовый Шмидт-Кассегрен с помощью моей видеокамеры.
Я любил свою первую камеру — снятую с производства StellaCam 2. Но несмотря на то, что она без труда отображала объекты вроде туманности Конская Голова, чтобы сделать это, мне приходилось выставлять коэффициент усиления (чувствительность) в ручных настройках на такой уровень, при котором изображение на видеоэкране становилось шумным, с отвратительным неравномерным фоном. В ответ на это легкое неудобство я стал рассматривать возможность перехода на более чувствительную камеру. Более продвинутые модели, такие как StellaCam 3 или MallinCam Xtreme, допускали экспозицию в несколько часов (хотя вряд ли бы она когда-нибудь понадобилась).
Когда пришло время заменить мой StellaCam 2, я обратился к MallinCams, поскольку у них были цветные датчики, и остановился на MallinCam Xtreme, что было большим шагом по сравнению с моей предыдущей камерой.
Даже если установить коэффициент усиления на низкий уровень, изображения с астровидеокамер, как и в случае ПЗС-фотокамер, демонстрируют значительный тепловой шум. Внутренняя теплота вызывает высвобождение электронов с матрицы, и они проявляются на фотографиях как «ложные звезды». MallinCam Xtreme имеет электронное охлаждение для уменьшения теплового шума, как и специализированные ПЗС-камеры.
Результаты, которых я быстро достиг с Xtreme, кроме как ошеломительными не назвать. Переход от 10-секундной к 1-минутной экспозиции оказался разительным. Я не только мог сохранить низкий коэффициент усиления, что привело к получению более однородных изображений на мониторе, — я смог увидеть больше деталей, чем с короткими экспозициями, независимо от того, насколько высокий коэффициент усиления был выставлен на StellaCam.
В первую для Xtreme ночь в небе зависал Орион, поэтому я, естественно, развернул 11-дюймовый Шмидт-Кассегрен на Конскую Голову, установил экспозицию 56 секунд и приступил к съемке. Когда на экране сформировалось первое изображение, у меня отпала челюсть! «Фон», IC434, был ярко-красным. Отражательная туманность северо-восточнее, NGC 2023, голубела льдом. Но больше всего меня поразила сама темная туманность. Были заметны детали, которые я видел лишь на фотоснимках с длительной экспозицией, причем сейчас я наблюдал их без компьютера и долгих часов обработки.
Одним из преимуществ небольших детекторов в камерах для астровидео является то, что они могут задействовать сильные редукторы фокуса, не внося нежелательных искажений в изображения звезд, что позволяет превратить ваш Шмидт-Кассегрен f/10 в широкоугольный инструмент f/3,3.
Мало того что астровидеокамеры позволили мне видеть тусклые объекты — оказалось, что они выполнили и другое мое требование: наблюдать много чего хорошего каждую ночь. Благодаря простоте мой установки я за один вечер проделывал немалый путь. В процессе работы над Herschel Project (S&T: август 2012 г., стр. 60) передо мной стояла задача увидеть все 2500 объектов глубокого космоса Уильяма и Кэролайн Гершель, и я часто регистрировал по 100 или более тусклых объектов за ночь.
А что значит астровидео для вас? Возможно, ваши цели похожи на мои, но если вас больше интересуют красивые картинки, всё это может оказаться вам не по душе. Кадры, сделанные из видео, никогда не будут выглядеть так же привлекательно, как изображения, созданные астрономическими ПЗС-фотокамерами, хотя некоторые пользователи видео приблизились к такому результату, используя платы видеозахвата для передачи аналогового видео с камеры в компьютер для обработки.
Астровидео также не для тех, кого не устраивает куча дорогой техники между небом и наблюдателем. Для минимального набора понадобится камера, монитор, источник питания и кабели. А если вы хотите записать свои видео для последующего просмотра, то еще и видеомагнитофон. Сколько всё это стоит? Лучшие камеры относительно недороги по сравнению с астрономическими ПЗС-фотокамерами (от $ 500 до $ 2000 в зависимости от производителя и модели), но вам все равно придется учитывать стоимость дополняющих товаров.
Род Моллис
Большинство камер снабжены небольшим источником питания переменного тока, но в темной наблюдательной местности в захолустье они зачастую бесполезны. Я подключаю свою камеру шнуром питания постоянного тока от производителя к 12-вольтовому автомобильному аккумулятору. Кстати, я обнаружил, что при работе камеры от аккумулятора получается менее шумное видео, чем если бы я питал ее от розетки через адаптер.
Тип монитора, который вам нужен, зависит от места наблюдения. Если вы работаете дома с доступом к розетке, можно использовать любой телевизор/монитор со стандартным композитным видеовходом. В отдаленной местности обычно нужен тот, что работает на постоянном токе. Я использую один из распространенных портативных DVD-плееров с входным гнездом для внешнего видео, что позволяет мне использовать его в качестве монитора. Экран небольшой, но выглядит хорошо и долго работает от внутренней батареи.
Я сохраняю видео с камеры с помощью видеорекордера, который записывает мои снимки на карту памяти SD. Он целый вечер работает от своей батареи, он маленький и удобный. До того я использовал домашний DVD-рекордер, и он прекрасно работал, но я подключал его через инвертор к большому судовому аккумулятору, а тот был тяжелым и быстро разряжался инвертором.
Вот я балбес! Забыл упомянуть аксессуар № 1, который вам нужен: телескоп. Какого типа? Чтобы выйти за пределы Луны и планет (большинство современных астровидеокамер годятся и для изображения планет), вам нужен телескоп, который удовлетворяет трем требованиям: ему нужна широкоугольная оптика, у него должен быть подходящий фокус для камеры и моторный привод — предпочтительно с системой наведения GoTo.
У некоторых рефлекторов Ньютона недостаточное фокусное расстояние, чтобы можно было использовать хоть какую-то камеру, вставляющуюся непосредственно в фокусер телескопа. Рефракторы обычно работают без модификаций. Телескопы, у которых при фокусировке перемещается главное зеркало, например Шмидт-Кассегрен или Максутов-Кассегрен, благодаря широкому диапазону фокусировки редко имеют проблемы с камерами.
Светочувствительные матрицы астровидеокамер невелики, поэтому для удовлетворительного кадрирования большинства объектов требуется телескоп с широким полем зрения. Идеальное фокусное расстояние для видеотелескопа составляет от 500 до 1000 мм. У вас больше? Это легко исправить с помощью редукторов фокуса. Я использую редуктор f/3.3, чтобы превратить свой слишком длиннофокусный 2000-мм Шмидт-Кассегрен в более подходящий для видео 660-мм.
Меня часто спрашивают, можно ли взяться за видео с обычным телескопом Добсона, у которого нет возможности отслеживать звезды. К сожалению, ответ нет. Крошечные матрицы астровидеокамер превращают ручное отслеживание объектов (даже планет) в сплошное разочарование. Хорошая новость в том, что можно недорого приобрести рефлекторы Добсона на альт-азимутальной монтировке или экваториальной платформе. Маленькие видеочипы также затрудняют поиск и отслеживание объектов, поэтому телескоп с GoTo, который автоматически находит объекты, намного эффективнее и доставляет меньше неудобств при использовании видео.
Установка астровидеокамеры проще простого — надо лишь заменить окуляр на астровидеокамеру, после чего ваш телескоп становится объективом камеры.
Род Моллис
Итак, теперь у вас есть телескоп и видеокамера. Как они стыкуются? Легко. Камера идет прямиком в фокусер. Окуляр не требуется, а астровидеокамеры не оснащены объективами — ваш телескоп становится объективом. Большинство камер снабжены насадкой 1¼ дюйма, которая позволяет вставлять их непосредственно в фокусер.
Остается вопрос о выборе модели камеры. Не могу сказать, что новичку не подойдут топовые модели MallinCam Xtreme или StellaCam 3, но можно начать с простых и недорогих. Как Orion StarShoot Deep Space Video Camera, так и MallinCam Jr просты в использовании и дают отличные результаты с самого начала. Они ограничены 4-секундной экспозицией, но при схожей выдержке на StellaCam 2 у меня получилось отобразить сотни объектов.
Я много чего видел, используя астровидеокамеры в местах наподобие моего скромного дворика или засвеченной групповой площадки. Мне всё еще нравится смотреть в окуляр, но с видео я вижу гораздо больше. Мои камеры перевыполнили мое желание видеть глубже. Они помогли мне заглянуть за рамки каталогов Мессье и NGC в полчища тусклых галактик, образующих фон Вселенной.
Пишущий редактор Род Моллис наблюдает тусклые объекты из Chaos Manor South, чаще всего используя катадиоптрические телескопы.
www.realsky.ru