Содержание
Космический металл: (Все о титане) :: Книги по металлургии
Сплавы титана
Полученные в промышленных условиях слитки титана называют техническим титаном. Он имеют практически все те свойства, которыми обладает химически чистый титан. Технический титан в отличие от химически чистого содержит повышенное количество некоторых элементов-примесей. В разных странах в зависимости от технологических особенностей процесса технический титан содержит примеси (в %): железа 0,15—0,3; углерода 0,05-0,1; водорода 0,006-0,013; азота 0,04-0,07; кислорода 0,1 —0,4. Наилучшие качественные показатели по содержанию вышеперечисленных примесей имеет технический титан, выпускаемый в СССР. В целом эти примеси практически не ухудшают физические, механические, технологические свойства технического титана по сравнению с химически чистым металлом.
Технический титан — это металл серебристо-серого цвета с едва заметным светло-золотистым оттенком. Он легок, почти в 2 раза легче железа, но все же тяжелее алюминия: 1 см3 титана весит 4,5 г, железа 7,8 г, а алюминия 2,7 г. Плавится технический титан почти при 1700° С, сталь — при 1500°С, алюминий — при 600° С. Он в 1,5 раза прочнее стали и в несколько раз прочнее алюминия, очень пластичный: технический титан легко прокатывать в листы и даже в очень топкую фольгу, толщиной в доли миллиметра, его можно вытягивать в прутки, проволоку, делать из него лепты, трубы. Технический титан обладает высокой прочностью, т. о. хорошо противостоит воздействию ударом и поддастся ковке, при этом он имеет высокую упругость и отличную выносливость. У технического титана довольно высокий продел текучести, он сопротивляется любым усилиям и нагрузкам, стремящимся смять, изменить форму и размеры изготовленной детали. Это его свойство выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и в 18 раз, чем у алюминия. У титана гораздо более высокая твердость, чем у алюминия, магния, меди, железа и некоторых сортов стали, однако ниже, чем у инструментальных сталей.
Технический титан — металл очень большой коррозионной стойкости. Он практически не изменяется и не разрушается на воздухе, в воде, исключительно стоек при обычной температуре во многих кислотах, даже в «царской водке», во многих агрессивных средах.
У титана имеется еще множество уникальных качеств. Например, стойкость к кавитации, слабые магнитные свойства, низкие электропроводность и теплопроводность и т. н. Но есть у титана и недостатки. Главный — его большая дороговизна, он в 3 раза дороже стали, в 3—5 раз дороже алюминия. титан не универсальный коррозионно-стойкий конструкционный материал, у него несколько более низкие по сравнению с лучшими сортами легированных сталей значения модулей упругости и ползучести, он может разупрочняться при высоких температурах, склонен к абразивному износу, плохо работает па резьбовых соединениях. Все эти недостатки снижают эффективность применения технического титана в чистом виде, что в общем-то характерно и для других конструкционных металлов; железа, алюминия, магния. Многие, почти все, недостатки чистого титана устраняются при легировании ого различными металлами и создании сплавов на его основе. В качестве наилучших конструкционных и коррозионно-стойких материалов сплавы титана имеют огромное преимущество.
Титан, будучи весьма химически активным металлом, имеет благоприятные металлохимические свойства для образования прочных соединений — типа непрерывных и ограниченных твердых растворов ковалентных и ионных соединений.
В целом насчитывается более 50 элементов, дающих с титаном твердые растворы, на основе которых можно производить титановые сплавы и их соединения.
Сплавы титана с алюминием.
Они наиболее важны и техническом и промышленном отношении. Введение алюминия в технический титан даже в небольших количествах (до 13%) позволяет резко повышать жаропрочность сплава при снижении его плотности и стоимости. Этот сплав — отличный конструкционный материал. Добавка 3—8% алюминия повышают температуру превращения а-титана в b-титан. алюминий является практически единственным легирующим стабилизатором титана, увеличивающим его прочность при постоянстве свойств пластичности и вязкости титанового сплава и повышении его жаропрочности, сопротивления ползучести и модуля упругости. Этим устраняется существенный недостаток титана.
Помимо улучшения механических свойств сплавов при различных температурах, увеличивается их коррозионная стойкость и взрывоопасность ври работе деталей из титановых сплавов в азотной кислоте.
Алюминий-титановые сплавы выпускаются нескольких марок и содержат 3—8% алюминия. 0,4 — 0,5% хрома, 0,25-0,6% железа, 0,25-0,6% кремния, 0,01% бора. Все они коррозионно-стойкие, высокопрочные и жаропрочные сплавы па основе титана. С увеличением содержания алюминия и сплавах температура плавления несколько снижается, однако магнитные свойства значительно улучшаются и температура разупрочнения повышается.
Эти сплавы сохраняют высокую прочность до 600° С.
Сплавы титана с железом.
Своеобразным сплавом является соединение титана с железом, так называемый ферротитан, представляющий собой твердый раствор TiFe2 в a-жслезе.
Ферротитан облагораживающе действует на сталь, так как он, активно поглощая кислород, является одним из лучших раскислителей стали. Ферротитан так жt активно поглощает из расплавленной стали азот, образуя нитрид титана, другие примеси, способствует равномерному распределению прочих примесей и образованию мелкозернистых структур стали.
Кроме ферротитана, на основе железа и титана производятся и другие сплавы, широко используемые в черной металлургии. Феррокарботитан — железотитановый, содержащий 7—9% углерода, 74—75% железа, 10—17% титана. Ферросиликотитан — сплав, состоящий из железа (около 50%), титана (30%) и кремния (20%)- Оба эти сплава также применяются для раскисления сталей.
Сплавы титана с медью.
Даже небольшие присадки, меди к титану и другим его сплавам повышают их стабильность в процессе эксплуатации, увеличивается и их жаропрочность. Кроме того 5—12% титана добавляют в медь для получения так называемого купро-титана; им пользуются, чтобы очистить расплавленную медь и бронзу от кислорода и азота. Легирование меди титаном производится только очень небольшими ого добавками, уже при 5% титана медь становится нековкой.
Сплавы титана с марганцем.
Марганец, введенный в технический титан или в его сплавы, делает их прочнее, они сохраняют пластичность и легко обрабатываются при прокатке. Марганец — недорогой и не дефицитный металл, поэтому он широко применяется (до 1,5%) при легировании титановых сплавов, предназначенных для листовой прокатки. Богатый марганцем (70%) сплав называется мангантитаном. Оба металла являются энергетическими раскислителями. Этот сплав, как и купротитан, хорошо очищает от кислорода, азота и других примесей медь и бронзу при отливках.
Сплавы титана с молибденом, хромом и другими металлами.
Основная цель добавки этих металлов — повысить прочность и жаропрочность титана и его сплавов при сохранении высокой пластичности. Оба металла легируют их в комбинации: молибден предотвращает нестабильность титан-хромовых сплавов, делающихся хрупкими при высоких температурах. сплавы титана с молибденом по стойкости против коррозии в кипящих неорганических кислотах превосходят технический титан в 1000 раз. Для повышения коррозионной стойкости в титан добавляют некоторою тугоплавкие редкие и благородные металлы: тантал, ниобий, палладий.
Значительное количество весьма ценных в научно-техническом отношении композиционных материалов можно производить на основе карбида титана. Это главным образом жаростойкие изделия из металлокерамики, в основе которых лежит карбид титана. В них совмещается твердость, тугоплавкость и химическая стойкость карбида титана с пластичностью и сопротивлением тепловому удару цементирующих металлов — никеля и кобальта. В них можно вводить ниобий, тантал, молибден и тем самым еще больше повышать стойкость и жаропрочность этих композиций па основе карбида титана.
Сейчас известно более 30 различных сплавов титана с другими металлами, удовлетворяющих практически любым техническим требованиям. Это пластичные сплавы с низкой прочностью (300—600 МПа) и рабочей температурой 100—200° С, со средней прочностью (700— 1000 МПа) и рабочей температурой 200—300° С, конструкционные сплавы с повышенной прочностью (800— 1100 МПа) и рабочей температурой 300—450° С, высокопрочные (1000—1400 МПа) термомеханически обрабатываемые сплавы с нестабильной структурой и рабочей температурой 300—400° С, высокопрочные (1000— 1300 МПа) коррозионно-стойкие и жаропрочные сплавы с рабочей температурой 600—700° С, особо коррозионно-стойкие сплавы со средней прочностью (400— 900 МПа) и рабочей температурой 300-500° С.
Технический титан и его сплавы выпускаются в виде листов, плит, полос, лент, фольги, прутков, проволоки, труб, поковок и штамповок. Эти полуфабрикаты являются исходным материалом для изготовления из титана и: его сплавов различных изделий. Для этого полуфабрикаты надо обработать ковкой, штамповкой, фасонным литьем, резанием, сваркой и т д.
Как же ведет себя этот прочный, стойкой металл и его сплавы в обрабатывающих процессах? Многие полуфабрикаты используются непосредственно, например, трубы и листы. Вес они проходят предварительную термическую обработку. Затем для очистки поверхности подвергаются обработке гидропескоструйной или корундовым песком. Листовые изделия еще травит и шлифуют. Так были подготовлены титановые листы для монумента покорителям космоса на ВДНХ и для памятника Ю. А. Гагарину на площади его имени в Москве. Монументы из листового титана будут стоять вечно.
Слитки титана и его сплавов могут подвергаться ковке и штамповке, но только в горячем состоянии. Поверхности слитков, ночей и штампов должны быть тщательно очищены от примесей, так как титан и ого сплавы могут быстро с ними прореагировать и загрязниться. Рекомендуется даже перед ковкой и штамповкой покрывать заготовки специальной эмалью. Нагрев не должен превышать температур полного полиморфного превращения. Ковка производится но специальной технологии — сначала слабыми, а лотом более сильными и частыми ударами. Дефекты неправильно проведенной горячей деформации, приведшие к нарушению структуры и свойств полуфабрикатов последующей обработкой, в том числе и термической, исправить нельзя.
Листовой штамповке в холодном виде может подвергаться только технический титан и его сплав с алюминием и марганцем. Все остальные листовые титановые сплавы, как менее пластичные, требуют нагрева опять же с соблюдением строгого контроля температур, очистки Поверхности от «охрупченного» слоя.
Резка и рубка листов толщиной до 3 мм могут производиться в холодном состоянии, свыше 3 мм — при нагреве по специальным режимам. титан и его сплавы обладают высокой чувствительностью к надрезу и поверхностным дефектам, что требует специальных зачисток кромок в местах, подвергающихся деформации. Обычно в связи с этим предусматриваются припуски па размеры вырубаемых заготовок деталей и пробиваемых отверстий,
Резание, токарная, фрезерная и другие виды обработки деталей из титана и ого сплавов затрудняются их низкими антифрикционными свойствами, вызывающими налипание металла на рабочие Поверхности инструмента. С чем это связано. Между титановой стружкой и инструментом имеется очень небольшая контактная поверхность, в этой зоне возникают большие удельные давления и температуры. Отвод тепла из этой зоны затруднителен, так как титан обладает низкой теплопроводностью и может как бы «растворять» в себе металл инструмента. В результате титан налипает на инструмент и он быстро изнашивается. Приваривание и налипание титана на контактируемые Поверхности режущего инструмента приводят к изменению геометрических параметров инструмента. При механической обработке титановых изделий для уменьшения налипания и задирании титана, отвода тепла применяют сильно охлажденные жидкости. Для фрезерования они должны быть очень вязкими. Пользуются резцами из сверхтвердых сплавов, обработку ведут на очень небольших скоростях. В целом механическая обработка титана во много раз более трудоемкая операция, чем обработка стальных изделий.
Сверление отверстий в титановых изделиях тоже является сложной проблемой, связанной в основном с отводом стружки. Налипая на рабочие Поверхности сверла, она скапливается в отводящих канавках ого, пакетируется. Вновь образующаяся стружка движется уже по прилипшей. Все это снижает скорость сверления и повышает износ сверла.
Целый ряд титановых изделий изготавливать методами конки и штамповки нецелесообразно из-за технологических трудностей производства и большого количества отходов. Многие детали сложной формы гораздо выгоднее изготавливать фасонным литьем. Это весьма перспективное направление в производстве изделий из титана и его сплавов. Но на пути его развития есть ряд осложнений: расплавленный титан реагирует и с атмосферными газами, и практически со всеми известными огнеупорами, и с формовочными материалами. В связи с этим плавка титана и его сплавов производится в вакууме, а формовочный материал должен быть химически нейтральным по отношению к расплаву. Обычно формы, в которые он отливается, это графитовые кокиля, реже керамические и металлические
Несмотря на трудности этой технологии, фасонные отливки сложных деталей из титана и ого сплавов получаются при строгом соблюдении технологии и очень качественными. Ведь расплавы титана и его сплавов обладают отличными литейными свойствами: у них высокая жидкотекучесть, сравнительно небольшая (всего 2—3%) линейная усадка при затвердевании, они даже в условиях затрудненной усадки не дают горячих трещин, но образуют рассеянную пористость. Литье в вакууме имеет массу преимуществ: во-первых, исключается образование окисных пленок, шлаковых включений, газовой пористости; во-вторых, повышается жидкотекучесть расплава, что влияет на заполнение всех полостей литейной формы. Кроме того, на жидкотекучесть и полноценную заполняемость полостей литейных форм существенно влияют, например, центробежные силы. Поэтому, как правило, фасонные отливки из титана производятся центробежной заливкой.
Еще одним чрезвычайно перспективным методом изготовления деталей и изделий из титана это порошковая металлургия. Сначала получают очень мелкозернистый, скорее даже тонкодисперсный, порошок титана. Затем он спрессовывается в холодном виде и металлических пресс-формах, Далее при температурах 900—1000° С, а для высокоплотных конструкционных изделий при 1200—1300° С пресс-изделия спекаются. Разработаны и методы горячего прессования при температурах, близких к температуре спекания, которые позволяют повысить конечную плотность изделий и снизить трудоемкость процесса их изготовления.
Разновидностью динамического горячего прессования является горячая штамповка и выдавливание (экструзия) из порошков титана. Главное преимущество порошкового метода изготовления деталей и изделий — почти безотходное производство. Если по обычной технологии (слиток—полуфабрикат—изделие) выход годного составляет всего 25—30%, то при порошковой металлургии коэффициент использования металла повышается в несколько раз, снижается трудоемкость изготовления изделий, уменьшаются трудозатраты на механическую обработку. Методами порошковой металлургии можно организовать производство из титана новых изделий, изготовление которых традиционными Методами невозможно: пористые фильтрующие элементы, газопоглотители, металлополимерные покрытия и т. п.
Еще один важнейший аспект рассматриваемой проблемы — соединение титана. Как соединить титановые изделия (листы, ленты, детали и др.) между собой и с другими изделиями? Мы знаем три основных метода соединения металлов — это сварка, пайка и клепка их. Как же ведет себя титан во всех этих операциях? Вспомним, что титан обладает, особенно при повышенных температурах, высокой химической активностью. При взаимодействии с кислородом, азотом, водородом воздуха зона расплавленного металла насыщается этими голами, изменяется микроструктура металла в месте разогрева, может происходить загрязнение посторонними примесями, и сваркой шов будет хрупким, пористым, непрочным. Поэтому обычно методы сварки титановых изделий неприемлемы. Сварка титана требует постоянного и неукоснительного предохранения сварного шва от загрязнения примесями и газами воздуха. Типология сварки титановых изделий предусматривает ее проведение с большой скоростью только в атмосфере инертных газов с применением специальных бескислородных флюсов. Наиболее качественная Сварка производится в специальных обитаемых или необитаемых камерах, зачастую автоматическими методами. Необходим постоянный контроль состава газа, флюсов, температуры, скорости сварки, а также качества шва визуальным, рентгеновским и другими методами. Сварной титановый шов хорошего качества должен иметь золотистый оттенок без всякой побежалости. Особо крупные изделия сваривают в специальных герметично закрытых помещениях, заполненных инертным газом. Работу производит сварщик высокой квалификации, оп работает в скафандре с индивидуальной системой жизнеобеспечения.
Небольшие титановые изделия можно соединять методами пайки. Здесь возникают те же проблемы предохранения разогретых спаиваемых чистой от загрязнения газами воздуха и примесями, делающими пайку ненадежной. Кроме того, обычно припои (олово, медь и другие металлы) не пригодны. Используются только серебро и алюминий высокой степени чистоты.
Соединения титановых изделий с помощью клейки пли болтов тоже имеют свои особенности. Титановая клепка очень трудоемкий процесс: на нее приходите» тратить вдвое больше времени, чем на алюминиевую. Резьбовое соединение титановых изделий ненадежны, так как титановые гайки и болты при завинчивании начинают налипать и задираться, и оно может не выдержать больших напряжений. Поэтому болты и гайки из титана обязательно покрывают топким слоем серебра или синтетической пленкой из тефлона, а уж потом используют для завинчивания.
Свойство титана к налипанию и задиранию, обусловленное высоким коэффициентом трения, не позволяет применять его без специальной предварительной обработки в трущихся изделиях; при скольжении по любому металлу титан, налипая на трущуюся деталь, быстро изнашивается, деталь буквально вязнет в липком титане. Для устранения этого явления приходится специальными Методами упрочнять поверхностный слой титана в изделиях, работающих на скольжение. Производится азотирование или оксидирование титановых изделий: их при высоких температурах (850—950° С) выдерживают в течение определенного времени в атмосфере чистого азота или кислорода. В результате на Поверхности образуется тонкая нитридная или окисная пленка высокой микротвердости. Такая обработка приближает износостойкость титана к специальным поверхностно обработанным сталям и позволяет применять его в трущихся и скользящих, изделиях.
Металл в космосе | Металлургический портал MetalSpace.ru
Металл вокруг нас
- Образование и карьера
- Металлургия и общество
- Металл вокруг нас
Металлургия и общество
Культурные, социально-политические и технические взаимосвязи современной индустриальной цивилизации, в основе которой лежат металлургические технологии.
АНАЛИТИКА
Научные статьи и методические материалы о природных и вторичных ресурсах металлов, а также металлургических технологиях
Производство и наука
Эколого-экономическая эффективность реновации технических изделий
июль 22, 2019
Сжиженный природный газ
март 19, 2018
Ветроэнергетика в России, развитие технологии в ветроэнергетике
янв 23, 2018
Методические материалы
Модернизация барабанных летучих ножниц — Дипломный проект
дек 03, 2020
Схема рециклинга автомобильных катализаторов, содержащих металлы платиновой группы
авг 15, 2018
Историко-реконструкторское движение в России
фев 04, 2017
Интерактивный учебник
Как правильно согнуть металлический квадрат
апр 01, 2020
Сталь с полимерным покрытием
янв 04, 2019
Топливо из ТБО
дек 17, 2018
Потенциал Забайкальского .
..
Обработка металлов …
Пластическая деформация …
Металлургические технологии …
Основоположники отечественной …
Основоположники отечественной …
Русская средневековая .
..
Русская средневековая …
ИНТЕРАКТИВ
Интерактивная картина мира металлов на ключевых этапах истории цивилизации
Энциклопедия «Металлургия и время»
«Дредноуты» и «крупповские пушки»
март 10, 2014
Преимущества получения ферромарганца в электропечах
март 09, 2014
Проблемы производства доменных ферросплавов
март 08, 2014
Металлургические объекты
Музей истории МИСиС. Металлургия – кузница победы
апр 20, 2020
Доменная печь Лиенсхютте (Lienshytte blast-furnace)
авг 28, 2014
Железоделательный завод Энгельсберг (Engelsbergs bruk)
авг 27, 2014
Обучающие игры
Маша и компания — Таланты
дек 07, 2014
Маша и компания — Игры на природе
дек 06, 2014
Легенды огня и металла Часть 3. Мушкет
июнь 19, 2014
Copyright © 2011 — 2022 MetalSpace
Лучшие исполнители космического металла | Ласт.фм
Доступна новая версия Last.fm, чтобы все работало нормально, перезагрузите сайт.
Рекомендуется далее
металл
металл
Не хотите видеть рекламу? Обнови сейчас
org/MusicGroup»>Не хотите видеть рекламу? Обнови сейчас
org/MusicGroup»> org/MusicGroup»>
Space Metal Fantasy – CAPiTA Snowboarding
Space Metal Fantasy
FST05
КОСМИЧЕСКИЙ МЕТАЛЛ ФЭНТЕЗИ
ЖЕНСКИЕ / РАДИАЛЬНЫЕ / TRUE TWIN
139
141
143
145
147
149
151
153
429,95 $
Данного размера сейчас нет в наличии.
Выберите размерНайти дилера
Техническая история
Пятикратный обладатель награды Transworld Good Wood Award Space Metal Fantasy считается одним из лучших женских паркетных досок на рынке. Однако, если честно, заявление о том, что это доска для парков, в значительной степени ограничивает ее потенциал. Мы представляем это как серию парков для целей классификации, но на самом деле это гораздо больше. Space Metal Fantasy отлично подходит для катания по склонам, игр на аттракционах в парке и даже невероятно хорошо плавает в рыхлом снегу. Эта очень щадящая форма обратного изгиба доставляет удовольствие гонщикам среднего уровня, которые хотят ускорить процесс обучения и поднять свое катание на новый уровень на самых разных типах местности. S.M.F. — это средство для прогресса, которое может преуспеть в любых условиях езды, не нарушая бюджета.
Узнать больше
Узнать больше
Тип гонщика: ПАРК + КУРОРТ ФРИСТИЛЬ
ХОРОШИЙ НОВИЧОК — ГОТОВ К УДАРУ, ПРЫЖКУ, СЛЕШУ ИЛИ ПЛАВАНИЮ ПО ЦЕНЕ НАЧАЛЬНОГО УРОВНЯ
Размеры и характеристики
Length | Effective Edge (mm) | Waist | Nose/Tail | Sidecut | Max Stance (cm/inches) | Suggested Weight (lbs/kg) |
---|---|---|---|---|---|---|
139 | 1106 | 22. 8 | 27.2 / 27.2 | 6.7 | 53.6 / 21.0 | 80-130 / 36-59 |
141 | 1121 | 23.1 | 27.6 / 27.6 | 6.8 | 56.0 / 22.0 | 85-135 / 38-61 |
143 | 1137 | 23.3 | 27.8 / 27.8 | 6.9 | 56.0 / 22.0 | 90-140 / 41-63 |
145 | 1153 | 23.6 | 28.1 / 28.1 | 7.1 | 58.4 / 23.0 | 95-145 / 43-66 |
147 | 1179 | 23.9 | 28.4 / 28.4 | 7.3 | 58.4 / 23.0 | 100-150 / 45-68 |
149 | 1186 | 24.1 | 28.6 / 28.6 | 7.5 | 58.4 / 23.0 | 105-155 / 47-70 |
151 | 1203 | 24.3 | 28.8 / 28.8 | 7.7 | 60.9 / 24.0 | 110-160 / 49-73 |
153 | 1219 | 24. 5 | 29.0 / 29.0 | 7.9 | 60.9 / 24.0 | 120-170+ / 54-77+ |
Flex: TWIN
Тип изгиба: ПРОФИЛЬ PARK V2
Эти универсальные доски имеют форму фристайла Flat Kick с двойным обратным прогибом. Нулевой изгиб по всей области вставки обеспечивает стабильное ощущение конькового стиля, в то время как приподнятые точки контакта включаются вовремя и легко плавают в рыхлом снегу.
Размеры и характеристики
Длина | Эффективность Край (мм) | Талия | Нос/Хвост | SIDECUT | MAX Stance (CM/дюйма) | Предложение (LBS (CM/дюйма) | Предлагаемое веса (CM/дюйма) | . 139 | 1106 | 22.8 | 27.2 / 27.2 | 6.7 | 53.6 / 21.0 | 80-130 / 36-59 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141 | 1121 | 23.1 | 27. 6 / 27.6 | 6.8 | 56.0 / 22.0 | 85-135 / 38-61 | ||||||||
143 | 1137 | 23.3 | 27.8 / 27.8 | 6.9 | 56.0 / 22.0 | 90-140 / 41-63 | ||||||||
145 | 1153 | 23.6 | 28.1 / 28.1 | 7.1 | 58.4 / 23.0 | 95-145 / 43-66 | ||||||||
147 | 1179 | 23,9 | 28.4 / 28.4 | 7.3 | 58.4 / 23.0 | 100-150 / 45-68 | ||||||||
149 | 1186 | 24.1 | 28.6 / 28.6 | 7.5 | 58.4 / 23.0 | 105- 155 / 47-70 | ||||||||
151 | 1203 | 24.3 | 28.8 / 28.8 | 7.7 | 60.9 / 24.0 | 110-160 / 49-73 | ||||||||
153 | 1219 | 24.5 | 29.0 / 29,0 | 7,9 | 60,9 / 24,0 | 120-170+ / 54-77+ |
Узнать больше
Узнать больше
Добавки
FSC ® CERTIFIED DUAL CORE™
Поперечная насечка
Технические детали
FSC® CERTIFIED DUAL CORE™
Легкий мак Основа из тополя в сочетании с буком для повышения мощности и долговечности
СПЕЦИАЛЬНАЯ СМЕШАННАЯ СТЕКЛОСТЕКЛО + СМОЛА MAGIC BEAN™
Индивидуально взвешенный двухосный верх / двухосный низ = повышенная прочность и долговечность.