“Сколько всего черных дыр во Вселенной?”в закладки. Сколько черных дыр в нашей галактике


Сколько черных дыр в нашей Галактике? - 9 Августа 2017 | Земля

Группа астрофизиков из Университета Калифорнии провела анализ имеющихся данных о строении нашей Галактики. Принимались во внимание известные на данный момент сведения о механизмах и сроках звездообразования, времени жизни звезд и о том, что бывает с ними после — когда выгорит все топливо для термоядерных реакций. Особо учитывались данные о составе звезд и его распределении. Млечный Путь, как отмечают авторы исследования, богат звездами, в составе которых в заметных количествах присутствуют металлы, включая тяжелые. Это не исключение — крупные спиральные галактики характеризуются именно таким составом звезд, в отличие от более мелких сферических, где металлов заметно меньше.

 

Непосредственным толчком к продолжавшейся полтора года работе послужила первая регистрация гравитационных волн детектором LIGO. В тот раз источником «ряби» пространства-времени стало слияние двух черных дыр, масса каждой из них превосходила солнечную примерно в 30 раз.

Что такое черные дыры и почему они черные?

 

Это сам по себе выдающийся научный результат — было экспериментально подтверждено последнее значимое предсказание общей теории относительности. Но ученые любопытны: им стало интересно, как часто в относительной близости от нас могут происходить подобные события. Их вероятность зависит от количества черных дыр, доли массивных черных дыр с массами в десятки солнечных и количества двойных дыр, обращающихся достаточно близко друг к другу, чтобы слиться за разумное время.

 

Подробности исследования можно увидеть в статье, опубликованной в Monthly Notices of the Royal Astronomical Society, а мы будем лаконичны. Общая популяция черных дыр в нашей Галактике исчисляется величиной порядка сотни миллионов. Около пяти миллионов из них имеют достаточную массу, чтобы их слияние оказалось зарегистрированным при современном уровне чувствительности техники. Наименее ясен вопрос с долей двойных черных дыр.

 

Тем не менее, можно полагать, что следующее слияние будет зарегистрировано земной техникой в ближайшие годы.

earth-chronicles.ru

Черные дыры Ч.4 - Все о космосе

Страница 1 из 3

Солнце в компании с черной дырой?

В  основу своей экстравагантной теории астроном Э. Р. Харрисон положил результаты наблюдений не­которых пульсаров. Для наилучшего согласования наблюдений с теорети­ческими моделями требовалось при­сутствие в окрестностях Солнца доста­точно массивного невидимого тела. Те­оретические расчеты свидетельствова­ли, что компаньон Солнца (если тако­вой действительно есть) должен быть только нейтронной звездой или ЧД, поскольку любая звезда или слабый бе­лый карлик обязательно были бы обна­ружены при систематических осмот­рах неба в инфракрасном диапазоне. Такой массивный сосед подстегнул бы движение нашего светила на 104 м/с2, а направление этого ускорения показа­ло бы возможное место расположения ЧД — участок созвездий Стрельца и Змееносца. Теория предусмотрела большой диапазон возможных моде­лей — от ЧД с массой в одну массу Солнца на расстоянии 800 а. е. до объекта с массой в 150 солнечных масс на рас­стоянии до 9000 а. е. Отметим, что ес­ли такой компаньон у Солнца и будет найден, это окажется, скорее, не посто­янное соседство, а случайная встреча на бесконечных галактических просто­рах. Ведь этот сосед — ЧД — проходя на фоне отдаленных звезд, работает как гравитационная линза, и подобное явление земные наблюдатели наверня­ка бы заметили.

Что произойдет при коллапсе Солнца

Сразу отметим, что подобное аб­солютно невозможно, но все же, интересно знать... В таблице 1 мы видим, что радиус горизонта событий нашего светила после коллапса будет составлять всего 3 км. Но поскольку масса его при этом не изменится, то Земля и другие планеты могли бы продолжать двигаться по своим орби­там, не ощутив превращения Солнца в ЧД. Большая неприятность состоя­ла бы в другом — нам стало бы не хва­тать солнечной энергии, и наша аго­ния в космическом мраке была бы страшнее, чем у космонавта при паде­нии на черную дыру.

Сколько черных дыр может быть в нашей Галактике?

По самым скромным оценкам, в нашей Галактике каждый год заканчивают свою эволюцию 0,2 звез­ды с массами более двух солнечных. Поскольку звезд в ней более 100 млрд., а возраст около 10 млрд. лет, можно сделать вывод, что ЧД должно быть около 2 млрд., т. е., на 50 "нормаль­ных" звезд приходится одна ЧД. А зна­чит, расстояние до ближайшей ЧД мо­жет составлять 15-20 световых лет...

 

Вселенная – огромная черная дыра?

Вопрос интересный, не так ли? Тем более, что нет оснований отрицать подобную гипотезу. Ведь по определению, ЧД ничто не может покинуть — ни вещество, ни излучение. Кроме того, если в ядрах ги­гантских галактик (почти в каждом, по нынешним представлениям) су­ществуют ЧД, то почему бы, нара­щивая до бесконечности иерархи­ческую лестницу, не постулировать существование одной гигантской ЧД? Тем более что теоретики уже "набили руку" на создании неподтвержденных прямыми наблюда­тельными данными структур и объектов.

astroera.net

Сверхмассивная черная дыра в центре Млечного Пути. Сверхмассивная черная дыра в квазаре OJ 287

Совсем недавно науке стало достоверно известно, что же такое черная дыра. Но едва ученые разобрались с этим феноменом Вселенной, на них свалился новый, куда более сложный и запутанный: сверхмассивная черная дыра, которую и черной-то не назовешь, а скорее ослепительно белой. Почему? А потому, что именно такое определение дали центру каждой галактики, который светится и сияет. Но стоит туда попасть, и кроме черноты, ничего не остается. Что же это за головоломка такая?

Памятка о черных дырах

Доподлинно известно, что простая черная дыра – это некогда светившая звезда. На определенном этапе существования ее гравитационные силы стали непомерно увеличиваться, при этом радиус оставался прежним. Если раньше звезду "распирало", и она росла, то теперь силы, сосредоточенные в ее ядре, начали притягивать к себе все остальные составляющие. Ее края "заваливаются" на центр, образуя невероятной силы коллапс, который и становится черной дырой. Такие «бывшие звезды» уже не светят, а являются абсолютно внешне незаметными объектами Вселенной. Но они весьма ощутимы, так как поглощают буквально все, что попадает в их гравитационный радиус. Неизвестно, что кроется за таким горизонтом событий. Исходя из фактов, любое тело столь огромная гравитация буквально раздавит. Однако в последнее время не только фантасты, но и ученые придерживаются мысли о том, что это могут быть своеобразные космические тоннели для путешествий на большие расстояния.

Что же такое квазар

Подобными свойствами обладает сверхмассивная черная дыра, иными словами, квазар. Это ядро галактики, у которого есть сверхмощное гравитационное поле, существующее за счет своей массы (миллионы или миллиарды масс Солнца). Принцип формирования сверхмассивных черных дыр пока установить не удалось. Согласно одной версии, причиной такого коллапса служат слишком сжатые газовые облака, газ в которых предельно разряжен, а температура невероятно высока. Вторая версия – это приращение масс различных малых черных дыр, звезд и облаков к единому гравитационному центру.

Наша галактика

Сверхмассивная черная дыра в центре Млечного Пути не входит в разряд самых мощных. Дело в том, что сама галактика имеет спиралевидную структуру, что, в свою очередь, заставляет всех ее участников находиться в постоянном и достаточно быстром движении. Таким образом, гравитационные силы, которые могли бы быть сосредоточены исключительно в квазаре, как бы рассеиваются, и от края к ядру увеличиваются равномерно. Несложно догадаться, что дела в эллиптических или, скажем, неправильных галактиках, обстоят противоположным образом. На «окраинах» пространство крайне разряженное, планеты и звезды практически не движутся. А вот в самом квазаре жизнь буквально бьет ключом.

Параметры квазара Млечного Пути

Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу. Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Итак, Стрелец А* (так названо ядро) приравнивается к четырем миллионам солнечных масс. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие звездные скопления.

Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий.

Парадоксальные факты

Галактика Млечный Путь относится к разряду молодых и новых звездных скоплений. Об этом свидетельствует не только ее возраст, параметры и положение на известной человеку карте космоса, но и мощность, которой обладает ее сверхмассивная черная дыра. Однако, как оказалось, «смешные» параметры могут иметь не только молодые космические объекты. Множество квазаров, которые обладают невероятной мощностью и гравитацией, удивляют своими свойствами:

  • Обычный воздух зачастую имеет большую плотность, чем сверхмассивные черные дыры.
  • Попадая на горизонт событий, тело не будет испытывать приливных сил. Дело в том, что центр сингулярности находится достаточно глубоко, и дабы достичь его, придется проделать долгий путь, даже не подозревая, что обратной дороги уже не будет.

Гиганты нашей Вселенной

Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности. Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет.

Опасное соседство

Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями – расстояние между ними составляет примерно 3,5 миллиарда световых лет. Астрономы не исключают и той версии, что в ближайшем будущем эти два космических тела столкнутся, образовав сложную звездную структуру. По одной из версий, именно из-за сближения с подобным гравитационным гигантом движение планетарных систем в нашей галактике постоянно ускоряется, а звезды становятся горячее и активнее.

Сверхмассивные черные дыры на самом деле белые

В самом начале статьи был затронут весьма щекотливый вопрос: цвет, в котором перед нами постают самый мощные квазары, сложно назвать черным. Невооруженным глазом даже на самой простенькой фотографии любой галактики видно, что ее центр – это огромная белая точка. Почему же тогда мы считаем, что это сверхмассивная черная дыра? Фото, сделанные через телескопы, демонстрируют нам огромное скопление звезд, которые притягивает к себе ядро. Планеты и астероиды, которые вращаются рядом, из-за непосредственной близости отражают, тем самым преумножая весь присутствующий рядом свет. Так как квазары не затягивают с молниеносной скоростью все соседние объекты, а лишь удерживают их в своем гравитационном радиусе, они не пропадают, а начинают еще больше пылать, ведь их температура стремительно растет. Что же касается обычных черных дыр, которые существуют в открытом космосе, то их название полностью оправдано. Размеры относительно невелики, но при этом сила гравитации колоссальна. Они попросту «съедают» свет, не выпуская из своих берегов ни единого кванта.

Кинематограф и сверхмассивная черная дыра

Гаргантюа – этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь. Но в первоначальном сценарии планировали создать три черных дыры, две из которых носили бы названия Гаргантюа и Пантагрюэль, взятые из сатирического романа Франсуа Рабле. После внесенных изменений осталась лишь одна «кроличья нора», для обозначения которой было выбрано первое наименование. Стоит заметить, что в фильме черная дыра изображена максимально реалистично. Так сказать, дизайном ее внешнего вида занимался ученый Кип Торн, который базировался на изученных свойствах данных космических тел.

Как мы узнали о черных дырах?

Если бы не теория относительности, которая была предложена Альбертом Эйнштейном в начале ХХ века, никто бы, наверное, даже не обратил внимания на эти загадочные объекты. Сверхмассивная черная дыра расценивалась бы как обычное скопление звезд в центре галактики, а рядовые, маленькие, вовсе бы осталась незамеченными. Но сегодня, благодаря теоретическим расчетам и наблюдениям, которые подтверждают их правильность, мы можем наблюдать такой феномен, как искривление пространства-времени. Современные ученые говорят, что найти «кроличью нору» не так уж и сложно. Вокруг такого объекта материя ведет себя неестественно, она не только сжимается, но порой и светится. Вокруг черной точки образуется яркий ореол, который виден в телескоп. Во многом природа черных дыр помогает нам постичь историю становления Вселенной. В их центре находится точка сингулярности, подобная той, из которой ранее развился весь окружающий нас мир.

Доподлинно неизвестно, что может случиться с человеком, который пересечет горизонт событий. Раздавит ли его гравитация, или же он окажется в совершенно ином месте? Единственное, что можно утверждать с полной уверенностью, – гаргантюа замедляет время, и в какой-то момент стрелка часов окончательно и бесповоротно останавливается.

fb.ru

Сколько черных дыр в нашей Галактике? (видео)

 

Группа астрофизиков из Университета Калифорнии провела анализ имеющихся данных о строении нашей Галактики. Принимались во внимание известные на данный момент сведения о механизмах и сроках звездообразования, времени жизни звезд и о том, что бывает с ними после — когда выгорит все топливо для термоядерных реакций. Особенно учитывались данные о составе звезд и его распределение.

Млечный Путь, как отмечают авторы исследования, богатый звездами, в составе которых в заметных количествах присутствуют металлы, включая тяжелые. Это не исключение — крупные спиральные галактики характеризуются именно таким составом звезд, в отличие от более мелких сферических, где металлов заметно меньших. Непосредственным толчком к длительной полтора года работы послужила первая регистрация детектором гравитационных волн LIGO. В тот раз источником «ряби» пространства-времени стало слияние двух черных дыр, масса каждой из них превосходила солнечную примерно в 30 раз.

Что такое черные дыры и почему они черные?

Это сам по себе выдающийся научный результат — было экспериментально подтверждено последнее значимое предсказания общей теории относительности. Но ученые заинтригованы: им стало интересно, как часто в относительной близости от нас могут происходить подобные события. Их вероятность зависит от количества черных дыр, доли массивных черных дыр с массами в десятки солнечных и количества двойных дыр, которые вращаются довольно близко друг к другу, чтобы слиться за разумное время.

Подробности исследования можно увидеть в статье, опубликованной в Monthly Notices of the Royal Astronomical Society, а мы будем кратки.

Общая популяция черных дыр в нашей Галактике исчисляется величиной порядка сотни миллионов. Около пяти миллионов из них имеют достаточную массу, чтобы их слияние оказалось зарегистрированным при современном уровне чувствительности техники. Наименее ясен вопрос с долей двойных черных дыр. Тем не менее, можно думать, что такое слияние будет зарегистрировано земной техникой в ближайшие годы.

что еще почитать?

jivukakdura.ru

“Сколько всего черных дыр во Вселенной?”

В третий раз за историю мы напрямую обнаружили неоспоримую сигнатуру черных дыр: гравитационные волны, появившиеся в результате их слияния. В сочетании с тем, что мы уже знаем о звездных орбитах возле галактического центра, рентгеновских и радионаблюдений других галактик, измерений скорости движения газа, отрицать существование черных дыр ну никак нельзя. Но хватит ли нам информации, из этих и других источников, чтобы рассказать нам, сколько на самом деле во Вселенной черных дыр и как они распределяются?

В самом деле, как много во Вселенной черных дыр, если сравнивать с видимыми звездами?

Первое, что вы хотели бы сделать, это перейти к прямым наблюдениям. И это отличное начало.

Карта экспозиции в 7 миллионов секунд, сделанная Chandra Deep Field — South . В этом регионе сотни сверхмассивных черных дыр

Наш лучший рентгеновский телескоп на сегодняшний день — это рентгеновская обсерватория Чандра. Со своей позиции на орбите Земли она может идентифицировать даже одиночные фотоны из отдаленных источников рентгеновского излучения. Создавая глубокие изображения существенных участков неба, она может идентифицировать буквально сотни рентгеновских источников, каждый из которых соответствует далекой галактике за пределами нашей собственной. Основываясь на энергетическом спектре полученных фотонов, мы видим сверхмассивные черные дыры в центре каждой галактики.

Но каким бы невероятным ни было это открытие, в мире гораздо больше черных дыр, чем по одной на галактику. Конечно, в каждой галактике, в среднем, есть по меньшей мере миллионы или миллиарды солнечных масс, но мы видим далеко не всё.

Массы известных бинарных систем черных дыр, включая три проверенных слияния и одного кандидата на слияния от LIGO

Недавно LIGO заявила о своем третьем прямом обнаружении мощного гравитационного сигнала от слияния бинарных черных дыр, что подтвердило распространенность таких систем по Вселенной. У нас пока недостаточно статистики, чтобы получить числовую оценку, поскольку порог ошибки слишком высок. Но если взять за основу текущий порог LIGO и тот факт, что она находит сигнал раз в два месяца (в среднем), можно с уверенность сказать, что в каждой галактике размером с Млечный Путь, которую мы можем зондировать, есть как минимум с десяток таких систем.

Диапазон Advanced LIGO и ее возможность обнаружения сливающихся черных дыр

Более того, наши рентгеновские данные показывают, что есть много бинарных черных дыр с меньшей массой; возможно, значительно больше, чем массивных, которые может найти LIGO. И это даже не учитывая данные, указывающие на существование черных дыр, которые не включены в жесткие бинарные системы, а их должно быть большинство. Если в нашей галактике есть десятки черных дыр средней и высокой массы (в 10-100 солнечных масс), должны быть сотни (3-15 солнечных масс) бинарных черных дыр и тысячи изолированных (небинарных) черных дыр звездной массы.

Здесь стоит сделать акцент на «как минимум».

Потому что черные дыры чертовски сложно искать. Пока что мы можем видеть лишь самые активные, самые массивные и самые выдающиеся. Черные дыры, которые закручиваются по спирали и сливаются, великолепны, но такие конфигурации должны быть космологически редкими. Те, что увидела Чандра, являются самыми массивными, активными и все такое, но большинство черных дыр не являются монстрами в миллионы-миллиарды солнечных масс, и большинство больших черных дыр неактивны в настоящее время. Мы наблюдаем лишь малую фракцию черных дыр, и это стоит понимать, невзирая на все великолепие наблюдаемого.

То, что мы воспринимаем как взрыв гамма-излучения, может возникать в процессе слияния нейтронных звезд, которые выбрасывают вещество во Вселенную и создают самые тяжелые из известных элементов, но также порождают черную дыру в конце

И все же у нас есть способ получить качественную оценку количества и распределения черных дыр: мы знаем, как они образуются. Мы знаем, как сделать их из молодых и массивных звезд, которые становятся сверхновыми, из нейтронных звезд, которые сливаются, и в процессе прямого коллапса. И хотя оптические сигнатуры создания черной дыры крайне неоднозначны, мы повидали достаточно звезд, их смерти, катастрофических событий и звездообразования за всю историю Вселенной, чтобы иметь возможность найти именно те цифры, которые ищем.

Останки сверхновой, рожденной из массивной звезды, оставляют после себя коллапсирующий объект: либо черную дыру, либо нейтронную звезду, из которой в дальнейшем может образоваться черная дыра при определенных условиях

Три этих способа создания черных дыр все уходят корнями, если проследить все до конца, в массивные регионы звездообразования. Чтобы получить:

  • Сверхновую, вам нужна звезда, которая будет в 8-10 раз больше массы Солнца. Звезды больше 20-40 солнечных масс дадут вам черную дыру; звезды меньше — нейтронную звезду.
  • Нейтронную звезду, сливающуюся в черную дыру, нужно либо две нейтронных звезды, танцующих в спирали или сталкивающихся, либо нейтронная звезда, высасывающая массу из звезды-компаньона до определенного предела (около 2,5-3 солнечных масс), чтобы стать черной дырой.
  • Прямой коллапс черной дыры, вам нужно достаточно материала в одном месте для образования звезды в 25 раз массивнее Солнца, и определенные условия, чтобы точно получить черную дыру (а не сверхновую).

Фотографии Хаббла показывают массивную звезду в 25 раз массивнее Солнца, которая просто исчезла, без образования сверхновой или другого объяснения. Прямой коллапс будет единственным возможным объяснением

В наших окрестностях мы можем измерить, из всех образующихся звезд, сколько из них имеют правильную массу, чтобы потенциально стать черной дырой. Мы находим, что лишь 0,1-0,2% всех звезд поблизости имеют достаточно массы, чтобы стать сверхновой, причем подавляющее большинство образует нейтронные звезды. Около половины систем, которые образуют бинарные (двоичные) системы, однако, включают звезды сопоставимых масс. Другими словами, большинство из 400 миллиардов звезд, сформировавшихся в нашей галактике, никогда не станут черными дырами.

Современная система спектральной классификации систем Моргана-Кинана с температурным диапазоном каждого звездного класса в кельвинах. Превосходящее большинство (75%) звезд сегодня — звезды М-класса, из которых лишь 1 на 800 достаточно массивна, чтобы стать сверхновой

Но это нормально, потому что некоторые из них станут. Что еще более важно, многие уже стали, хоть и в далеком прошлом. При образовании звезд вы получаете распределение масс: вы получаете несколько массивных звезд, несколько больше средних по массе и очень много маломассивных. Настолько много, что маломассивные звезды М-класса (красные карлики) с массой всего в 8-40% солнечной составляют три четверти звезд в наших окрестностях. В новых скоплениях звезд будет не так много массивных звезд, которые могут стать сверхновыми. Но в прошлом звездообразующие регионы были намного больше и богаче массой, чем Млечный Путь сегодня.

Крупнейшие звездные ясли в местной группе, 30 Doradus в Туманности Тарантула, включают самые массивные звезды, известные человечеству. Сотни из них (в следующие несколько миллионов лет) станут черными дырами

Выше вы видите 30 Doradus, крупнейший звездообразующий регион в местной группе, с массой в 400 000 солнц. В этом регионе тысячи горячих, очень синих звезд, из которых сотни станут сверхновыми. 10-30% из них превратятся в черные дыры, а остальные станут нейтронными звездами. Если предположить, что:

  • в нашей галактике было много таких регионов в прошлом;
  • крупнейшие звездообразующие регионы сосредоточены вдоль спиральных рукавов и по направлению к галактическому центру;
  • где мы видим пульсары (останки нейтронных звезд) и источники гамма-лучей сегодня, будут черные дыры,

мы можем составить карту и показать на ней, где будут черные дыры.

Спутник NASA «Ферми» составил карту высоких энергий Вселенной в высоком разрешении. Черные дыры в галактике на карте вероятнее всего будут следовать выбросам с небольшим разбросом и разрешаться миллионами отдельных источников

Это карта гамма-лучевых источников неба, составленная «Ферми». Она похожа на звездную карту нашей галактики, разве что сильно высвечивает галактический диск. Более старые источники обеднели на гамма-лучи, поэтому это относительно новые точечные источники.

По сравнению с этой картой, карта черных дыр будет:

  • более сосредоточенной в галактическом центре;
  • чуть более размытой по ширине;
  • включать галактическую выпуклость;
  • состоять из 100 миллионов объектов, плюс-минус погрешность.

Если создать гибрид карты «Ферми» (выше) и карту галактики COBE (ниже), можно получить количественную картину расположения черных дыр в галактике.

Галактика, видимая в инфракрасном от COBE . Хотя эта карта показывает звезды, черные дыры будут следовать похожему распределению, хоть и более сжатому в галактической плоскости и более централизованному к выпуклости

Черные дыры реальные, распространены и подавляющее большинство из них крайне трудно обнаружить сегодня. Вселенная существует очень давно, и хотя мы видим огромное число звезд, большинство из самых массивных звезд — 95% и больше — уже давно погибли. Чем они стали? Около четверти из них стали черными дырами, миллионы еще скрываются.

Черная дыра в миллиарды раз массивнее Солнца питает рентгеновский джет в центре M 87, но в этой галактике должны быть миллиарды других черных дыр. Их плотность будет сосредоточена в галактическом центре

Эллиптические галактики закручивают черные дыры в эллиптический рой, скапливающийся вокруг галактического центра, примерно как и звезды, что мы видим. Многие черные дыры со временем мигрируют в гравитационный колодец в центре галактики — поэтому сверхмассивные черные дыры и становятся сверхмассивными. Но мы пока не видим этой картины целиком. И не увидим, пока не научимся качественно визуализировать черные дыры.

В отсутствие прямой визуализации, наука дает нам только это и рассказывает кое-что примечательное: на каждую тысячу звезд, что мы видим сегодня, есть примерно одна черная дыра. Неплохая статистика для совершенно невидимых объектов, согласитесь.

Июн 17, 2017Геннадий

zhizninauka.info

Сколько во вселенной чёрных дыр? — Альтернативный взгляд Salik.biz

В третий раз за историю мы напрямую обнаружили неоспоримую сигнатуру черных дыр: гравитационные волны, появившиеся в результате их слияния. В сочетании с тем, что мы уже знаем о звездных орбитах возле галактического центра, рентгеновских и радионаблюдений других галактик, измерений скорости движения газа, отрицать существование черных дыр ну никак нельзя. Но хватит ли нам информации, из этих и других источников, чтобы рассказать нам, сколько на самом деле во Вселенной черных дыр и как они распределяются?

В самом деле, как много во Вселенной черных дыр, если сравнивать с видимыми звездами?

Первое, что вы хотели бы сделать, это перейти к прямым наблюдениям. И это отличное начало.

Карта экспозиции в 7 миллионов секунд, сделанная Chandra Deep Field—South. В этом регионе сотни сверхмассивных черных дыр

Наш лучший рентгеновский телескоп на сегодняшний день — это рентгеновская обсерватория Чандра. Со своей позиции на орбите Земли она может идентифицировать даже одиночные фотоны из отдаленных источников рентгеновского излучения. Создавая глубокие изображения существенных участков неба, она может идентифицировать буквально сотни рентгеновских источников, каждый из которых соответствует далекой галактике за пределами нашей собственной. Основываясь на энергетическом спектре полученных фотонов, мы видим сверхмассивные черные дыры в центре каждой галактики.

Но каким бы невероятным ни было это открытие, в мире гораздо больше черных дыр, чем по одной на галактику. Конечно, в каждой галактике, в среднем, есть по меньшей мере миллионы или миллиарды солнечных масс, но мы видим далеко не всё.

Массы известных бинарных систем черных дыр, включая три проверенных слияния и одного кандидата на слияния от LIGO

Недавно LIGO заявила о своем третьем прямом обнаружении мощного гравитационного сигнала от слияния бинарных черных дыр, что подтвердило распространенность таких систем по Вселенной. У нас пока недостаточно статистики, чтобы получить числовую оценку, поскольку порог ошибки слишком высок. Но если взять за основу текущий порог LIGO и тот факт, что она находит сигнал раз в два месяца (в среднем), можно с уверенность сказать, что в каждой галактике размером с Млечный Путь, которую мы можем зондировать, есть как минимум с десяток таких систем.

Диапазон Advanced LIGO и ее возможность обнаружения сливающихся черных дыр

Более того, наши рентгеновские данные показывают, что есть много бинарных черных дыр с меньшей массой; возможно, значительно больше, чем массивных, которые может найти LIGO. И это даже не учитывая данные, указывающие на существование черных дыр, которые не включены в жесткие бинарные системы, а их должно быть большинство. Если в нашей галактике есть десятки черных дыр средней и высокой массы (в 10-100 солнечных масс), должны быть сотни (3-15 солнечных масс) бинарных черных дыр и тысячи изолированных (небинарных) черных дыр звездной массы.

Здесь стоит сделать акцент на «как минимум».

Потому что черные дыры чертовски сложно искать. Пока что мы можем видеть лишь самые активные, самые массивные и самые выдающиеся. Черные дыры, которые закручиваются по спирали и сливаются, великолепны, но такие конфигурации должны быть космологически редкими. Те, что увидела Чандра, являются самыми массивными, активными и все такое, но большинство черных дыр не являются монстрами в миллионы-миллиарды солнечных масс, и большинство больших черных дыр неактивны в настоящее время. Мы наблюдаем лишь малую фракцию черных дыр, и это стоит понимать, невзирая на все великолепие наблюдаемого.

То, что мы воспринимаем как взрыв гамма-излучения, может возникать в процессе слияния нейтронных звезд, которые выбрасывают вещество во Вселенную и создают самые тяжелые из известных элементов, но также порождают черную дыру в конце

И все же у нас есть способ получить качественную оценку количества и распределения черных дыр: мы знаем, как они образуются. Мы знаем, как сделать их из молодых и массивных звезд, которые становятся сверхновыми, из нейтронных звезд, которые сливаются, и в процессе прямого коллапса. И хотя оптические сигнатуры создания черной дыры крайне неоднозначны, мы повидали достаточно звезд, их смерти, катастрофических событий и звездообразования за всю историю Вселенной, чтобы иметь возможность найти именно те цифры, которые ищем.

Останки сверхновой, рожденной из массивной звезды, оставляют после себя коллапсирующий объект: либо черную дыру, либо нейтронную звезду, из которой в дальнейшем может образоваться черная дыра при определенных условиях

Три этих способа создания черных дыр все уходят корнями, если проследить все до конца, в массивные регионы звездообразования. Чтобы получить:

— Сверхновую, вам нужна звезда, которая будет в 8-10 раз больше массы Солнца. Звезды больше 20-40 солнечных масс дадут вам черную дыру; звезды меньше — нейтронную звезду.

— Нейтронную звезду, сливающуюся в черную дыру, нужно либо две нейтронных звезды, танцующих в спирали или сталкивающихся, либо нейтронная звезда, высасывающая массу из звезды-компаньона до определенного предела (около 2,5-3 солнечных масс), чтобы стать черной дырой.

— Прямой коллапс черной дыры, вам нужно достаточно материала в одном месте для образования звезды в 25 раз массивнее Солнца, и определенные условия, чтобы точно получить черную дыру (а не сверхновую).

Фотографии Хаббла показывают массивную звезду в 25 раз массивнее Солнца, которая просто исчезла, без образования сверхновой или другого объяснения. Прямой коллапс будет единственным возможным объяснением

В наших окрестностях мы можем измерить, из всех образующихся звезд, сколько из них имеют правильную массу, чтобы потенциально стать черной дырой. Мы находим, что лишь 0,1-0,2% всех звезд поблизости имеют достаточно массы, чтобы стать сверхновой, причем подавляющее большинство образует нейтронные звезды. Около половины систем, которые образуют бинарные (двоичные) системы, однако, включают звезды сопоставимых масс. Другими словами, большинство из 400 миллиардов звезд, сформировавшихся в нашей галактике, никогда не станут черными дырами.

Современная система спектральной классификации систем Моргана-Кинана с температурным диапазоном каждого звездного класса в кельвинах. Превосходящее большинство (75%) звезд сегодня — звезды М-класса, из которых лишь 1 на 800 достаточно массивна, чтобы стать сверхновой

Но это нормально, потому что некоторые из них станут. Что еще более важно, многие уже стали, хоть и в далеком прошлом. При образовании звезд вы получаете распределение масс: вы получаете несколько массивных звезд, несколько больше средних по массе и очень много маломассивных. Настолько много, что маломассивные звезды М-класса (красные карлики) с массой всего в 8-40% солнечной составляют три четверти звезд в наших окрестностях. В новых скоплениях звезд будет не так много массивных звезд, которые могут стать сверхновыми. Но в прошлом звездообразующие регионы были намного больше и богаче массой, чем Млечный Путь сегодня.

Крупнейшие звездные ясли в местной группе, 30 Doradus в Туманности Тарантула, включают самые массивные звезды, известные человечеству. Сотни из них (в следующие несколько миллионов лет) станут черными дырами

Выше вы видите 30 Doradus, крупнейший звездообразующий регион в местной группе, с массой в 400 000 солнц. В этом регионе тысячи горячих, очень синих звезд, из которых сотни станут сверхновыми. 10-30% из них превратятся в черные дыры, а остальные станут нейтронными звездами. Если предположить, что:

— в нашей галактике было много таких регионов в прошлом;

— крупнейшие звездообразующие регионы сосредоточены вдоль спиральных рукавов и по направлению к галактическому центру;

— где мы видим пульсары (останки нейтронных звезд) и источники гамма-лучей сегодня, будут черные дыры,

— мы можем составить карту и показать на ней, где будут черные дыры.

Спутник NASA «Ферми» составил карту высоких энергий Вселенной в высоком разрешении. Черные дыры в галактике на карте вероятнее всего будут следовать выбросам с небольшим разбросом и разрешаться миллионами отдельных источников

Это карта гамма-лучевых источников неба, составленная «Ферми». Она похожа на звездную карту нашей галактики, разве что сильно высвечивает галактический диск. Более старые источники обеднели на гамма-лучи, поэтому это относительно новые точечные источники.

По сравнению с этой картой, карта черных дыр будет:

— более сосредоточенной в галактическом центре;

— чуть более размытой по ширине;

— включать галактическую выпуклость;

— состоять из 100 миллионов объектов, плюс-минус погрешность.

Если создать гибрид карты «Ферми» (выше) и карту галактики COBE (ниже), можно получить количественную картину расположения черных дыр в галактике

Галактика, видимая в инфракрасном от COBE. Хотя эта карта показывает звезды, черные дыры будут следовать похожему распределению, хоть и более сжатому в галактической плоскости и более централизованному к выпуклости

Черные дыры реальные, распространены и подавляющее большинство из них крайне трудно обнаружить сегодня. Вселенная существует очень давно, и хотя мы видим огромное число звезд, большинство из самых массивных звезд — 95% и больше — уже давно погибли. Чем они стали? Около четверти из них стали черными дырами, миллионы еще скрываются.

Черная дыра в миллиарды раз массивнее Солнца питает рентгеновский джет в центре M87, но в этой галактике должны быть миллиарды других черных дыр. Их плотность будет сосредоточена в галактическом центре

Эллиптические галактики закручивают черные дыры в эллиптический рой, скапливающийся вокруг галактического центра, примерно как и звезды, что мы видим. Многие черные дыры со временем мигрируют в гравитационный колодец в центре галактики — поэтому сверхмассивные черные дыры и становятся сверхмассивными. Но мы пока не видим этой картины целиком. И не увидим, пока не научимся качественно визуализировать черные дыры.

В отсутствие прямой визуализации, наука дает нам только это и рассказывает кое-что примечательное: на каждую тысячу звезд, что мы видим сегодня, есть примерно одна черная дыра. Неплохая статистика для совершенно невидимых объектов, согласитесь.

ИЛЬЯ ХЕЛЬ

salik.biz

Ученые подсчитали число черных дыр в Млечном пути

Понедельник, 13 Марта 2017 09:18 Фото из открытых источников

Работники Калифорнийского университета в Ирвине (город в США), смогли определить количество чёрных дыр Млечного Пути. Об этом сообщает новостной портал МонаВиста ссылаясь на Ленту.ру.

 

Как оказалось, в Млечном Пути удалось обнаружить несколько миллионов объектов с сильной гравитацией. Все эти чёрные дыры по подсчётам учёных тяжелее нашего Солнца в 30 раз. Такие выводы специалистам удалось сделать на основе данных о массе галактики и количестве элементов тяжелее гелия, которые в ней содержаться.

 

Также астрономы утверждают, что между размером галактики и количеством чёрных дыр в ней есть связь. Чем меньше галактики, тем выше количество чёрных дыр. При этом их массы выше солнечной в 50 раз. Несмотря на это, исследователи заметили, что чёрные дыры, масса которых в 10 раз выше солнечной имеются в достаточном количестве на территории крупных галактик.  

 

Один процент от общего количества чёрных дыр в нашей галактике составляют объекты, которые объединены в двойные системы. Изучением такого явление занимаются специалисты из обсерватории LIGO (Laser Interferometric Gravitational Observatory).

Главное за сутки

В ООН встретили смехом выступление Трампа‍ Участники 73-й сессии Генассамблеи ООН встретили смехом слова президента США Дональда Трампа об успехах, которых он достиг в сравнении со своими предшественниками. В начале своей речи Трамп отметил, что «меньше… Какие перемены принесёт мирный договор Японии и России? Премьер-министр Японии Синдзо Абэ снова заявил о необходимости заключить мирный договор с Россией и рассказал, что это даст всей Северо-Восточной Азии. — Благодаря наличию мирного договора Японии и России Северо-Восточная…

Читайте также

Учёные открыли богомолов, охотящихся на рыбу Богомолов, которые охотятся на небольших рыбок, обнаружили исследователи из Индии. По данным издания Journal of Orthoptera Research, речь идет об очень необычном, как для насекомых, поведении. Богомолы, если что, поедают…

Интернет и СМИ

Опрос

Нужно ли запрещать гаджеты в школах?

 

Анекдот дня

Некоторые люди славятся своим умением находить выход из самых сложных ситуаций. Я славлюсь умением находить туда вход.

Еще »

planet-today.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики