Строение планеты Юпитер. Строение юпитера в разрезе


Планета Юпитер и спутники Юпитера

Подробно:

© Владимир Каланов,сайт "Знания-сила".

Спутники Юпитера, снятые КА «Galileo»

Первые четыре спутника открыл ещё Галилей, когда в январе 1610 г (по новому стилю) он навёл в ночное небо собственноручно изготовленный им телескоп, точнее, зрительную трубу. Это открытие он посвятил семье герцога Тосканского Козимо II Медичи, у которого он служил придворным математиком. Спутники получили названия Ио, Европа, Ганимед и Каллисто. Эти спутники до сих пор считаются «галилеевыми спутниками», а раньше их называли «галилеевыми лунами».

Галилей рассматривал спутники в телескоп с увеличением в 32 раза. Увидеть эти спутники около Юпитера в виде маленьких светящихся точек можно в хороший современный бинокль.

Все четыре «галелеевы спутника» движутся в плоскости экватора Юпитера. Подчиняясь не совсем ясному закону движения, все они вращаются вокруг своей оси со скоростью, равной скорости обращения вокруг планеты. Поэтому они обращены к Юпитеру всегда одной стороной. Этот же феномен мы наблюдаем у нашей Луны.

До 1892 года были известны только эти четыре спутника. В 1892 году французский астроном Бернард с помощью телескопа открыл ещё один спутник – Амальтею. Это был последний спутник Юпитера, открытый визуально. Но когда Юпитер и его окрестности начали исследовать с помощью автоматических зондов, имеющих аппаратуру для фотографирования, то было обнаружено ещё несколько спутников. В настоящее время известно и в определённой мере изучено 16 спутников Юпитера. Но это не окончательная цифра. Автоматические межпланетные станции фиксируют наличие других, более мелких небесных тел, вращающихся вокруг планеты.

Основные характеристики спутников Юпитера

Основные характеристики спутников Юпитера, открытых Галилеем, приведены в таблице.

Спутники Медичи

Спутники Расстоя­ние до Юпитера (км) Орби­таль­ный период (дни) Радиус (км) Масса (гр) Сред­няя плот­ность (г/см³)
Ио 421600 1,77 1821 8,94 x1025 3.57
Европа 670900 3,55 1565 4,8 x1025 2,97
Ганимед 1070000 7,16 2634 1,48 x1026 1,94
Каллисто 1883000 16,69 2403 1,08 x1026 1,86

Приведём теперь основные све́дения о спутниках Юпитера, полученные в результате их исследования автоматическими межпланетными станциями.

Спутник Ио

По фотографиям, переданным зондом «Вояджер-1» (1979г.), а затем и Галилео (старт окт. 1989 - достижение орбиты Юпитера дек. 1995 - конец миссии сент.2003) установлено, что на этом спутнике происходит активная вулканическая деятельность. На одном из снимков видна впадина вулканического происхождения диаметром около 50 км со следами застывшей лавы. Этот огромный кратер с ровным дном мог сформироваться в результате обруше́ния вулкана или в процессе его извержения. Похожих образований диаметром более 25 км на поверхности Ио обнаружено более ста.

Цвет лавы, излива́ющейся из недр спутника, самый разнообразный: чёрный, желтый, красный, оранжевый, коричневый. Предположительно лава состоит из расплавленного базальта с примесью серы, или даже чистой серы.

«Вояджер-1» запечатлел на этом спутнике девять извержений вулканов, происходивших одновременно. Через четыре месяца «Вояджер-2» зафиксировал, что семь из этих вулканов продолжали действовать, выбрасывая столбы ды́ма и пепла на высоту до 300 км. отсюда можно сделать вывод, что извержения вулканов на Ио происходят часто, а их продолжительность измеряется многими месяцами и даже годами. Учёные связывают высокую вулканическую активность этого спутника с относительной близостью его к Юпитеру: Ио удалён от Юпитера в среднем на 420 тысяч километров. На поверхность Ио со стороны Юпитера оказывается приливное воздействие, гораздо более сильное, чем воздействие Земли на Луну. В твёрдой коре Ио амплитуда приливов достигает 100 метров. Это означает, что приливны́е силы выполняют на спутнике огромную работу, которая превращается в тепло, выделяемое из его недр. По расчетам учёных, мощность тепла, выделяемого недрами Ио с каждого квадратного метра поверхности в 30 раз выше, чем на Земле.

Ио имеет магнитное поле, которое создаётся его ядром, содержащим жидкий металл. Активные вулканы создали вокруг спутника разряжё́нную атмосферу, в которой почти не содержится свободного кислорода. Сера, в жидком виде выбрасываемая вулканами, накапливается на поверхности, т.к. для её сгорания не хватает кислорода. Этим объясняется преобладающий оранжевый цвет поверхности Ио.

Ионосфера спутника Ио испытывает воздействие заря́женных частиц окружающего пространства, которые разгоняются магнитным полем Юпитера. Возбуждение атомов ионосферы проявляется в виде интенсивных полярных сияний, отчетливо видимых на снимках, переданных зондом «Галилей».

Спутник Европа

Это не менее интересный спутник Юпитера. По размерам Европа в четыре раза меньше Земли. Предполагается, что в прошлые геологические эпохи на Европе существовал океан. На снимках, переданных зондом «Галилей» (1995 г.), видно, что поверхность Европы покрыта слоем льда с трещинами и разломами. Причиной трещин может оказаться вода в жидком состоянии, находящаяся под слоем льда и имеющая более высокую температуру. Причиной перепада температур учёные считают воздействие Юпитера, вызывающее «приливы-отливы» на спутнике. Приливное воздействие Юпитера на поверхности Европы более слабое, чем на поверхности Ио, но всё же достаточно заметное. Тёмный цвет трещин даёт основание считать, что по ним поднималась вода, впоследствии застывшая. Не исключается, что под ледяным слоем Европы и до настоящего времени находится океан, который, как считается, имеет контакт с силикатной мантией спутника, что обеспечивает приток элементов - "кирпичиков" жизни. На поверхности Европы имеются метеоритные кратеры, но их немного и они небольших размеров. Это можно объяснить тем, что при падении крупного метеорита кратер, возника́вший от удара, заполнялся водой, которая вскоре замёрзла. Мелкие метеориты не могут пробить ледяной панцирь и остаются на поверхности спутника, оставляя лишь небольшие воронки.

Предполагается, что Европа имеет металлическое ядро, радиус которого может достигать половины радиуса этого спутника, что составляет около 790 километров. По разным оценкам, толщина водно-ледяной оболочки Европы может быть в пределах от 80 до 170 км, а толщина ледяного покрова - от 2 до 20 км.

Гипотеза о наличии на Европе океана имеет в качестве своего логического следствия предположение о возможности жизни на Европе. Конечно, об организованных формах жизни здесь речь идти не может, но почему бы не допустить вероятность белковой жизни хотя бы на уровне бактерий? Жизнь - это расход энергии. Значит, нужен источник энергии. На Земле таким источником является Солнце. Но Европа удалена от Солнца на громадное расстояние (около 780 млн. км) и получает ничтожное количество солнечного тепла, находясь половину своего орбитального периода в огромной тени Юпитера. Но это обстоятельство для жизни на Европе было бы не так важно, ведь океан Европы получает тепловую энергию из её недр. Определённые условия для существования жизни в океане Европы, по-видимому могут создавать подводные вулканы, которые там наверняка имеются … и т.д. вероятность такого развития событий исчезающее мала, но её сбрасывать со счетов не хочется.

Гипотеза о возможности примитивной жизни на Европе может быть подтверждена или отброшена только после тщательного исследования этого спутника с помощью спускаемых зондов, если такое исследование станет когда-нибудь возможно.

Следует заметить, что сильная доза радиационного облучения вблизи Юпитера является серьёзной научно-технической проблемой при проектировании и изготовлении оборудования автоматических станций, которые будут по́сланы к спутникам Юпитера. Расчеты показывают, что при радиационной защите аппарата, которую можно обеспечить в ближайших планируемых космических проектах, за месяц пребывания посадочного модуля на поверхности Европы (в благоприятном месте) набирается около 250000 рад (2500 грей) поглощенной дозы радиоактивного облучения. Для сравнения: человек, находящийся в скафандре без дополнительной защиты на поверхности Европы ок. 90-150 минут уже не сможет выжить из-за поражения организма радиацией.

Спутник Ганимед

Это самый крупный из всех спутников Юпитера. Он больше Меркурия и во всей Солнечной системе по размерам занимает третье место после Титана (спутник Сатурна) и Тритона (Спутник Нептуна). Ганимед вполне мог бы считаться самостоятельной планетой, если бы обращался вокруг Солнца, а не вокруг Юпитера.

Поверхность Ганимеда покрыта слоем льда, по последним данным толщина льда больше, чем на Европе. На поверхности Ганимеда множество кратеров, образовавшихся в разные эпохи существования спутника. Характерной чертой поверхности является также наличие борозд шириной до 15 км и длиной в несколько десятков километров. Возможно, это результаты тектонической деятельности, места разломов коры, из которых когда-то вытекала лава. Вулканическая деятельность на Ганимеде имеет низкую активность, но действующие вулканы имеются. Предполагается, что при извержении вулканов на поверхность изливается не раскалённая лава, а водно-солевой раствор.

Под слоем льда находится жидкая вода в смеси с фрагментами грунта. Эта смесь составляет основную часть массы спутника, поэтому средняя плотность Ганимеда невелика - 1,93 (г/см³). Для сравнения: средняя плотность вещества Европы равна 2,97 (г/см³), а Ио - 3,57 (г/см³). Тенденция ясна: чем дальше от центрального светила находится спутник, тем меньше в его веществе тяжелых элементов. По такому закону распределялась материя в момент рождения светила и спутников. В данном случае «светилом» мы называем Юпитер.

Ганимед имеет сильно разреженную атмосферу (как на Ио и Европе). Верхние слои её состоят из заря́женных частиц, т.е. являются ионосферой. Атмосферным явлением на Ганимеде является выпадение и́нея. Пока неясно, из чего состоит иней - из воды или углекислоты, или из того и другого вместе.

Ганимед обладает магнитным полем, что доказывает наличие у него металлического ядра.

Спутник Каллисто

По размерам и массе, а также внутреннему строению Каллисто близок к Ганимеду. Это последний, т.е. наиболее удаленный от Юпитера и наименее яркий из галилеевых спутников. Среднее расстояние Каллисто от Юпитера составляет 1883000 км. поверхность Каллисто покрыта льдом, под которым может находиться жидкий солёный океан. Мантия Каллисто представляет собой смесь льда и минералов. По направлению к центру количество льда убывает. Магнитное поле у Каллисто отсутствует, что может означать отсутствие сплошного металлического ядра. Ядро этого спутника состоит, вероятно, в основном из минералов в смеси с металлами. Поверхность Каллисто покрыта бо́льшим, чем на других галилеевых спутниках количеством кратеров различных размеров. Среди кратеров особо выделяется углубление диаметром около 600 км, которое обнаружено благодаря своему более светлому тону. Вероятно, такое углубление могло появиться в результате столкновения Каллисто с крупным небесным телом в ту эпоху, когда поверхность спутника была ещё недостаточно твёрдой. Как и у Ганимеда, основную массу спутника Каллисто составляют вода, лёд и включения минералов. Этим объясняется невысокая средняя плотность его вещества - 1,86 (г/см³).

Малые спутники Юпитера

Кроме спутников, открытых Галилеем, вокруг Юпитера вращаются многочисленные спутники небольших размеров. Всего их обнаружено более шестидесяти. Радиусы их орбит составляют от нескольких сотен тысяч до нескольких десятков миллионов километров.

Основные характеристики 12-ти известных и в какой-то степени изученных малых спутников представлены в таблице.

Малые спутники Юпитера

Спутники Дата откры­тия Боль­шая полу­ось ор­биты (км) Орби­таль­ный период (дни) Радиус или раз­меры (км) Масса (кг) Плот­ность (г/см³)
Метида 1979 127691 0,295 86 1,2 x1017 3,0
Адрастея 1979 128980 0,298 20 x16 x14 2,0 x1015 1,8
Амальтея 1892 181365,8 0,498 250 x146 x128 2,1 x1018 0,857
Теба 1979 221889 0,675 116 x98 x84 4,3 x1017 0,86
Леда 1974 11160000 240,92 20 1,1 x1016 2,6
Гималия 1904 11461000 250,56 85 6,74 x1018 2,6
Лиситея 1938 11717100 259,2 18 6,2 x1018 2,6
Элара 1905 11741000 259,65 43 8,69 x1017 2,6
Ананке 1951 21276000 629,77 14 2,99 x1016 2,6
Карме 1938 23404000 734,17 23 1,32 x1017 2,6
Пасифе 1908 23624000 743,63 30 2,99 x1017 2,6
Синопе 1914 23939000 758,9 19 7,49 x1016 2,6

Наибольший интерес для астрономов представляют внутренние спутники Юпитера. Так условно названы четыре спутника: Мети́да, Адрастея, Амальтея и Теба, орбиты которых лежат внутри орбиты Ио. Крупнейший из этих спутников - Амальтея представляет собой каменную глыбу неправильной формы и внушительных (по земным меркам) размеров: 250x146x128 км. Астроному Бернарду, открывшему этот спутник визуально в 1892 году, конечно, не удалось разглядеть в телескоп это небесное тело, которое казалось ему крошечной светящейся точкой рядом с Юпитером. Некоторые физические характеристики спутника Амальтеи были получены с помощью автоматических зондов «Вояджер-1 и 2». Поверхность спутника тёмного, коричневато-желтого цвета покрыта кратерами, среди которых два имеют огромные для габаритов Амальтеи размеры: у одного диаметр составляет 100 км, и другого - около 80 км. цвет спутника объясняется возможным осаждением на его поверхность серы, выбрасываемой вулканами спутника Ио.

Ближайшие к Юпитеру спутники Мети́да и Адрастея (Мети́да чуть ближе к Юпитеру) имеют почти круговые орбиты, находящиеся в плоскости экватора планеты. Эти спутники находятся вблизи внешнего края колец Юпитера. Существует предположение, подтвержденное данными, полученными от АМС «Галилео», что кольца Юпитера основную массу своего вещества получили от внутренних спутников, в первую очередь от Метиды и Адрастеи. Определённую роль в этом процессе играют вулканы спутника Ио, которые выбрасывают вещество, попадающее затем на поверхность внутренних спутников. Ударами метеоритов вещество в виде пы́ли выбивается в окружающее космическое пространство, а гравитационное поле Юпитера направляет это вещество к планете, захватывая его и формируя из него ко́льца.

О других малых спутниках Юпитера известно пока немного. Группа из четырёх спутников - Леда, Гималия, Лиситея и Элара характеризуется тем, что их орбиты имеют большой наклон к экватору Юпитера - около 28°. Среди них Литисея - самый маленький по размеру спутник - его диаметр около 18 км.

Следующая группа из четырёх спутников - Ананке, Карме, Пасифе и Синопе примечательна тем, что орбиты этих спутников имеют большой наклон к плоскости экватора Юпитера - до 150°, причём движутся эти спутники в направлении, противоположном направлению движения других спутников. Спутники этой группы расположены на огромном расстоянии от Юпитера и представляют из себя не что иное, как крупные астероиды, захваченные гравитационным полем планеты-гиганта.

© Владимир Каланов,"Знания-сила"

znaniya-sila.narod.ru

Атмосфера и внутреннее строение Юпитера. Магнитное поле и кольца на Юпитере.

Подробно:

© Владимир Каланов,сайт "Знания-сила".

Атмосфера Юпитера

БКП и белый овал

Экваториальная зона

Атмосфера Юпитера состоит в основном из молекулярного водорода (76,1 % по массе) и гелия (23,8% по массе). В незначительном количестве присутствуют метан (0,21%), аммиак, инертные газы, а также кристаллики водяного льда. На поверхности Юпитера постоянно дуют сильные ветры. На Земле ветры со скоростью 150 м/с мы назвали бы ураганными, а для Юпитера такие ветры – нормальное явление. Установлено, что в северной полусфере Юпитера потоки атмосферного ветра достигают 600 км/ч (это 166 м/с).

Чёткой границы между поверхностью и атмосферой на Юпитере, как и на других газообразных планетах, не существует. Для определения такой границы астрономы ввели понятие условной «нулевой высоты», на которой происходит смена градиента температуры на обратный, т.е. начинается обратный отсчет температуры. Для точного определения нулевой высоты на Юпитере его атмосфера ещё недостаточно изучена. За верхнюю границу атмосферы планеты взят уровень давления в 1 нбар. При измерении физических свойств атмосферы зондом Галилео использовалась точка отсчёта с давлением в 1 атмосферу.

По данным зонда Галилео скорость ветра сначала растёт с глубиной, а потом становится постоянной. На уровне давления 0,5 атм. скорость ветра составила 90 м/сек, достигла 170 м/сек на уровне 4 атм. и далее почти не менялась.

Скорость / направление зональных ветров на Юпитере в зависимости от широты

В экваториальной области Юпитера ветры дуют в прямом направлении, т.е. в направлении вращения планеты, со скоростью ок. 70-140 м/сек. Но уже на 15-18 градусах северной и южной широт направление потоков газа меняется на обратное, где достигает скорости 50-60 м/сек. В дальнейшем атмосферные течения прямого и обратного направления несколько раз сменяют друг друга, а скорость ветра в них уменьшается с увеличением широты. В приполярных широтах зональная скорость ветра близка к нулю.

Установлено, что в атмосфере Юпитера присутствуют три слоя облаков. Наверху расположены облака́ из оледеневшего аммиака, ниже – кристаллы сероводорода аммония и метана, а в самом нижнем слое – водяной лёд и, возможно, жидкая вода.

Атмосфера Юпитера отличается высокой электрической активностью. Грозы там гремят непрерывно. Молнии достигают длины 1000 км и даже больше. В атмосфере Земли молнии длиной 50 км являются большой редкостью.

Вспышки молний в атмосфере Юпитера. Снимок ночной стороны планеты.

Внутреннее строение Юпитера

По современным представлениям, наружный слой Юпитера толщиной в 0,15 радиуса планеты, т.е. около 10000 км состоит из газа (смесь водорода и гелия). За этим слоем находится слой жидкого молекулярного водорода (смесь жидкого водорода и гелия). Толщина этого слоя составляет около 0,75 радиуса планеты, т.е. около 54 тысяч км. температура жидкого водорода в этом слое достигает 2000°С. Далее, на глубине до 0,9 радиуса планеты (около 65 тысяч км) водород находится в твёрдом металлическом состоянии с плотностью 11 (г/см³) и температурой 20000°С. Давление в этой зоне достигает 5 миллионов земных атмосфер.

Ядро Юпитера представляет собой твёрдое образование из железосиликатных и каменистых пород. Радиус ядра может составлять от 0,1 до 0,15 радиуса планеты, а его масса составляет около 4% общей массы Юпитера.

Под металлическим водородом понимается такое его агрегатное состояние, когда под давлением в несколько миллионов земных атмосфер электроны атомов водорода теряют связь с протонами и свободно перемещаются внутри окружающего вещества. Подобным образом ведут себя электроны в металлах.

Находясь на огромном расстоянии от Солнца, Юпитер получает в 27 раз меньше солнечного тепла, чем Земля. Измерения, выполненные с Земли и автоматическими зондами, показали, что энергия инфракрасного излучения Юпитера примерно в 1,5 раза превышает тепловую энергию, получаемую планетой от далёкого Солнца. Значит, Юпитер имеет внутренние запасы тепла. Считается, что эти запасы тепловой энергии являются остаточными с момента образования планеты. Гадать о том, каких значений может достигать температура в недрах Юпитера, не имеет смысла, хотя некоторые авторы и называют возможный уровень от 23000°C до 100000°C.

Поверхность Юпитера прогревается слабо из-за низкой теплопроводности веществ, составляющих внутренние слои планеты. Поэтому на поверхности Юпитера царит ужасный холод – до минус 150°C. В то же время действие внутреннего источника тепла на Юпитере проявляется в том, что в его атмосфере постоянно бушуют циклоны и антициклоны, беспрерывно дуют сильные ветры то с запада на восток, то с востока на запад. Для подобных проявлений атмосферной активности тепловой энергии, получаемой Юпитером от Солнца, было бы совершенно недостаточно. Это подтверждается метеорологическими расчётами.

Магнитное поле Юпитера

До 1979 года учёные не имели никаких данных о наличии или отсутствии магнитного поля у Юпитера. Из научной информации, полученной в марте 1979 года от автоматической межпланетной станции «Вояджер-1», а позднее и от АМС «Одиссей», стало ясно, что Юпитер обладает сильнейшим магнитным полем. По некоторым оценкам, напряженность магнитного поля на Юпитере почти в 50 раз выше, чем на Земле. Магнитная ось наклонена на 10,2 ± 0,6° по отношению к оси вращения Юпитера. Магнитные полюса́ Юпитера инвертированы по отношению к полюсам планеты. Поэтому стрелка ко́мпаса на Юпитере своим северным концом показала бы на юг. Предполагается, что магнитное поле на Юпитере генерирует хорошо проводящий электрический ток металлический водород вследствие быстрого вращения планеты.

Смелость такого предположения заключается в том, что на Земле никто и никогда не видел металлический водород и, соответственно, никто не изучал свойства этого, в общем-то гипотетического, вещества. Но в данном случае фантазия учёных совпадает с реальностью: ведь магнитное поле Юпитера существует реально.

Магнитное поле Юпитера простирается на огромное расстояние от планеты, не менее ста юпитерианских радиусов, т.е. достигает Сатурна. Если бы магнитосферу Юпитера можно было видеть с поверхности Земли, то её угловые размеры превышали бы размеры полной Луны, видимой с Земли.

Магнитное поле Юпитера создаёт вокруг планеты мощные радиационные пояса, т.е. области, заполненные заряженными частицами. Радиационные пояса Юпитера по интенсивности излучения в 40 тысяч раз превышают радиационные пояса Земли.

Аврора на Юпитере

Модель магнитосферы Юпитера

Наличие в магнитосфере Юпитера заря́женных частиц служит причиной полярных сияний, которые возникают в атмосфере высоких широт обоих полушарий планеты. Полярные сияния на Юпитере очень интенсивны, их можно наблюдать даже с Земли.

В то же время вокруг Юпитера установлено наличие плазменного кольца, т.е. зоны, где заря́женные частицы отсутствуют. Существование плазмы объясняется возможной ионизацией под действием солнечной радиации выбросов вулканов, действующих на спутнике Ио.

Ко́льца Юпитера

Система колец Юпитера сфотографированная аппаратом Галилео

В 1979 году зонды «Вояджер-1» и «Вояджер-2» открыли ко́льца, окружающие Юпитер. Система этих колец состоит из двух наружных и одного внутреннего. Ко́льца расположены в экваториальной плоскости Юпитера и находятся на расстоянии 55000 км от верхнего слоя атмосферы. Ко́льца представляют собой мелкие каменистые фрагменты, пыль и кусочки льда, вращающиеся вокруг планеты. Отражающая способность основной массы вещества колец низкая, поэтому заметить ко́льца с Земли чрезвычайно трудно. В этом состоит отличие колец Юпитера от колец другого газообразного гиганта – Сатурна, которые хорошо отражают солнечный свет и доступны наблюдению. Самая яркая и заметная часть юпитерианских колец составляет около 6400 км в ширину (точнее – в глубину) и до 30 км в толщину. С точки зрения небесной механики кольца Юпитера – это сотни тысяч мелких и мельчайших спутников, вращающихся вокруг этой планеты. Но астрономическая наука, конечно, не рассматривает в качестве спутников каменную мелочь, кусочки льда и прочий космический мусор, вращающийся вокруг каждой планеты.

© Владимир Каланов,"Знания-сила"

znaniya-sila.narod.ru

Поверхность Юпитера. Удивительные факты.

  • Главная
  • Планеты
    • Венера
    • Земля
    • Марс
    • Меркурий
    • Нептун
    • Плутон
    • Сатурн
    • Уран
    • Юпитер
  • Космические тела
  • Явления
  • Открытия

Поиск

Все о космосе | On Space | Сайт о Космосе и Вселенной
  • Главная
  • Планеты
    • Венера
    • Земля
    • Марс
    • Меркурий
    • Нептун
    • Плутон
    • Сатурн
    • Уран
    • Юпитер
  • Космические тела
  • Явления
  • Открытия

on-space.ru

Состав Юпитера

Наверное, трудно придумать условия, более отличные для земного обитателя, чем существующие на планетах типа Юпитера. Если, глядя на Марс, можно представить, что миллионы лет назад его пыльная поверхность могла быть покрыта лесами и океанами, то о наличии хоть какого-то подобия между Землей и газовыми гигантами, говорить не приходится. Небесные тела подобного класса крайне сложны для исследования, поэтому структура и состав Юпитера во многом остаются тайной, которую человечество пытается познать, опираясь на отрывочные знания, накапливаемые долгим и кропотливым трудом.

Облака – белогривые лошадки

Тень от спутника Юпитера Ганимеда проходит по Большому Красному Пятну

Когда говорят о юпитерианских облаках, то воображение пытается нарисовать вполне земные картины с мирно убегающими за линию горизонта белыми «барашками» или, на худой конец, постепенно затягивающими небосвод темно-фиолетовыми грозовыми тучами. И то, и другое далеко от действительности. По мнению ученых, то, что земной наблюдатель принимает за «поверхность» планеты, – это обледеневшие пары аммиака, плотно окутавшие Юпитер. Ниже находятся кристаллы сероводорода аммония, а еще глубже – замерзшие кристаллики воды. Последняя может присутствовать и в жидкой фазе в виде мелкой дисперсии. Весь этот «слоеный пирог» плотно закрывает планету от наблюдателя и о том, что творится ниже, можно только догадываться.

Ураганы в атмосфере

Обработанный снимок Большого Красного Пятна на Юпитере

Ураганы, бушующие в атмосфере Юпитера со скоростью свыше 600 км/ч, и турбулентные потоки и вихри, поднимающиеся снизу, перемешивают облачные массы, рисуя причудливые картины в виде полос и пятен. Движение потоков в атмосфере газового гиганта, в отличие от Земли, подпитывается за счет внутренней энергии планеты, поэтому образовавшиеся узоры имеют довольно стабильные геометрические размеры, слабо меняющиеся в течение периода их наблюдения.

Большое красное пятно

Природа этих явлений изучена очень слабо и единой стройной теории, объясняющей возникновение и длительное существование полос и пятен в атмосфере Юпитера, на настоящий момент не существует.

Современные представления о структуре и составе Юпитера

Рисунок художника изображающий сброс космическим аппаратом Галилео зонда в атмосферу Юпитера, справа художник нарисовал сброс защитного теплового щита зонда

Большинство ученых склоняются к мысли, что гигант Солнечной системы состоит из атмосферы, ядра и промежуточного слоя. Основные химические элементы, присутствующие на Юпитере, – это водород и гелий. Но результаты миссии космического аппарата «Галилео», сбросившего в конце 1995 года на планету зонд, подтвердили наличие также аргона, криптона, углерода и азота, и ряда других газов. Внешний слой атмосферы гиганта образован газообразным водородом, в среднем – добавляется гелий (в пропорции 1 к 9), а в нижнем – аммиак, гидросульфид аммония и вода, которые образуют облачный покров планеты.

Металлический водород

Строение Юпитера

Ниже располагается «океан», состоящий из металлического водорода. Такую структуру этот химический элемент может принимать под воздействием высоких давлений и температур. Представления о металлическом водороде чисто теоретические и в лабораторных условиях получить его пока не удалось. По мнению ученых, он представляет собой сверхтекучую и сверхпроводящую жидкость, способную образовываться при давлениях порядка миллиона атмосфер. Предполагается, что после снятия давления свойства полученной структуры могут сохраниться.

Структура атмосферы

Толщина такого жидкометаллического слоя планеты оценивается в 42–46 тыс. км. Не исключается присутствие в нем и жидкого гелия. Четкой границы между атмосферой и слоем металлического водорода не существует, а имеется пограничная турбулентная зона, толщиной 7–25 тыс. км, в которой происходит изменение фазового состояния этого химического элемента.

Ядро планеты

Размеры ядра Юпитера оцениваются примерно в 1,5 диаметра Земли, а температура и давление в нем достигают 30 000 K и 100 млн. атмосфер. Предполагается, что состоит оно из различных металлов и силикатов, а его масса составляет приблизительно 10–15 земных. Благодаря механизму Кельвина – Гельмгольца, такое ядро способно обеспечивать теплом процессы, происходящие в верхних слоях планеты, подпитывая их накопленной при сжатии энергией.

Вращение атмосферы Юпитера

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 2753

spacegid.com

Сердце великана: Как заглянули в ядро Юпитера

Глубоко, под тысячами километров газа и жидкости, в центре Юпитера скрывается твердое ядро, сплющенное и раскаленное чудовищной гравитацией планеты. По новым расчетам, ядро это минимум вдвое больше, чем считалось до сих пор.

Как изменились наши представления о строении Юпитера благодаря работе Милитцера и его коллег. Вверху — новая модель строения планеты, с твердым ядром, окруженным ледяной «коркой». Внизу — предыдущая гипотеза, в рамках которой считалось, что лед из воды, аммиака и метана распределен в атмосфере, а ядро в целом меньше

Юпитер и Земля: на смонтированной фотографии видно, как огромен этот газовый гигант

Состоит планета, в основном, из водорода и гелия. Считается, что в центре ее имеется твердое каменное ядро из более тяжелых элементов, сжатых колоссальным давлением; размер ядра в сравнении с Юпитером ничтожен, но и оно больше всей нашей Земли

Юпитер практически полностью состоит из легких элементов — водорода и гелия. Представим себе величественную картину его структуры: под густыми и неспокойными облаками вглубь простирается слой водорода с добавками гелия — толщиной до 25 тыс. км, постепенно, под воздействием все возрастающего давления и температуры, переходя из газовой в жидкую фазу. Четкой границы между фазами нет; все это выглядит скорее как колоссальный кипящий водородный котел.

Ниже его на 30−50 тыс. км расположен жидкий водород, при таких условиях имеющий металлические свойства: давление в многие миллионы атмосфер отрывают электроны от протонов, и такая жидкость прекрасно проводит электричество. Здесь рождаются мощные электрические поля, которые формируют магнитное поле всей планеты.

Еще глубже расположено твердое каменное ядро, куда за миллиарды лет существования планеты мигрировали все тяжелые элементы и под давлением от 30 до 100 млн атмосфер образовали весьма плотную «горошину» диаметром до 30 тыс. км и разогретую до 20 тыс. градусов.

Однако недавно проведенное компьютерное моделирование показало, что в размерах ядра Юпитера ученые до сих пор ошибались, причем серьезно. Современные технологии позволили детализировано смоделировать поведение водородно-гелиевой смеси при экстремально высоких давлении и температуре — настолько высоких, что в лаборатории провести подобные опыты не представляется возможным.

Группа ученых под руководством Баркхарда Милитцера (Burkhard Militzer) моделировала свойства водородо-гелиевой смеси, начав с температуры, плотности и давления, существующих на поверхности Юпитера, и постепенно продвигаясь вглубь, к ядру планеты, куда, конечно, не может заглянуть пока что ни один искусственный аппарат.

Оказалось, что ядро Юпитера представляет собой каменистое тело наподобие Земли, только в 14−18 раз тяжелее нашей планеты — и составляющее примерно 5% всей массы Юпитера (остальные 95% приходится на водородно-гелиевую атмосферу). Ранее считалось, что ядро Юпитера не может быть тяжелее 7 земных масс, а некоторые полагали, что у газового гиганта ядра и вовсе нет.

Данные компьютерного моделирования показали, что ядро состоит из последовательных слоев металлов, каменистых пород, а также льда из метана, воды, аммиака. По подсчетам группы Милитцера, ледяная корка ядра имеет массу около 4-х земных, то есть примерно 1% всей массы Юпитера. В самой его сердцевине находится «изюминка» из железа и никеля (как и в ядре нашей собственной планеты).

«Наше исследование говорит, — пояснил Милитцер, — что в центре Юпитера расположен крупный каменистый объект, окруженный слоями льда — единственного льда на всей планете… (ранее считалось, что лед разного состава более-менее равномерно распределен по атмосфере планеты — ПМ) Его ядро можно сравнить с Нептуном или Ураном — планетами, которые называются «ледяными гигантами», поскольку они представляют собой каменистые тела, окруженные толстым слоем льда из водорода и гелия — чтобы «получить» Юпитер, достаточно добавить толстый жидкостно-газовый слой».

Подобное строение планеты, кстати, имеет ряд интересных следствий. Во‑первых, можно сказать, что появившийся около 4,5 млрд лет назад Юпитер формировался сперва за счет столкновения небольших каменистых тел, которые со временем образовали его ядро, которое, в свою очередь, понемногу захватило колоссальную атмосферу водорода и гелия.

Кроме того, различные «слои» Юпитера вращаются с различной скоростью. Планету можно представить себе, как составленные друг с другом концентрические цилиндры, вращающиеся вокруг общей оси: ближе к экватору они вращаются быстрее. Кстати, подобное неравномерное вращение также наблюдается и у Солнца.

Между прочим, долгие годы считалось, что Юпитер является своего рода ангелом-хранителем нашей планеты, своей мощной гравитацией улавливая львиную долю прилетающих из космоса опасных комет и астероидов. Однако выяснилось, что это не так и, более того, может оказаться, что именно Юпитер направляет их поближе к Земле. Читайте почти детективную историю «Злой гигант».

По пресс-релизу UC Berkeley

www.popmech.ru

Строение планеты Юпитер

Видимая поверхность Юпитера представляет собой верхний уровень облаков, окружающих планету. Благодаря этому все детали на поверхности Юпитера постоянно меняют свой вид. Из устойчивых деталей известно Большое Красное пятно, наблюдающееся уже более 300 лет . Это - громадное овальное образование, размерами около 35000 км по долготе и 14000 по широте между Южной тропической и Южной умеренной полосами. Цвет его красноватый, но подвержен изменениям. Спектральные исследования Юпитера показали, что атмосфера его состоит из молекулярного водорода и его соединений: метана и аммиака. В небольших количествах присутствуют также этан, ацетилен, фосфен и водяной пар. Облака Юпитера состоят из кристалликов и капелек аммиака. В декабре 1973 г. с помощью американского космического аппарата "Пионер -10" удалось обнаружить наличие гелия в атмосфере Юпитера и измерить его содержание. Можно считать, что атмосфера Юпитера на 74% состоит из водорода и на 26% из гелия. На долю метана приходится не более 0,1% состава атмосферы планеты. Атмосферный слой имеет толщину около 1000 км. Ниже чисто газового слоя в атмосфере лежит слой облаков, которые мы и видим в телескоп.

В настоящее время построена двухслойная модель внутреннего строения планеты. Оболочка планеты состоит в основном из газовой компоненты (водород, гелий, неон), а ядро - из тяжелой компоненты (оксиды кремния, магния и железа, сульфиды, железо, никель и др.). Слой жидкого молекулярного водорода имеет толщину 24000 км. На этой глубине давление достигает 300 ГПа, а температура 11000 К, здесь водород переходит в жидкое металлическое состояние, т.е. становится подобным жидкому металлу. Слой жидкого металлического водорода имеет толщину около 42000 км. Внутри него располагается небольшое железно-силикатное твердое ядро радиусом 4000 км . На границе ядра температура достигает 30000 К. По массе ядро Юпитера составляет 3-4% от полной массы.

В 1956 г. было обнаружено радиоизлучение Юпитера на волне 3 см, соответствующее тепловому излучению с температурой 145 К. По измерениям в инфракрасном диапазоне температура самых наружных облаков Юпитера 130 К. Полеты американских космических аппаратов "Пионер-10" и "Пионер-11" позволили уточнить строение магнитосферы Юпитера, а изменение температуры облачного слоя в основном подтвердило известный из наземных наблюдений результат: количество тепла, которое Юпитер испускает, более чем вдвое превышает тепловую энергию, которую планета получает от Солнца. Возможно, что идущее из недр планеты тепло выделяется в процесс медленного сжатия гигантской планеты (1мм. в год). Магнитное поле планеты оказалось сложным и состоит как бы из двух полей: дипольного (как поле Земли), которое простирается до 1,5 млн. км от Юпитера, и не дипольного, занимающего остальную часть магнитосферы. Напряженность магнитного поля у поверхности в 20 раз больше, чем на Земле. Кроме теплового и дециметрового радиоизлучения Юпитер является источником радиовсплесков (резких усилений мощности излучения) на волнах длиной от 4 до 85 м, продолжительностью от долей секунды до нескольких минут или даже часов. Однако длительные возмущения - это не отдельные всплески, а серии всплесков - своеобразные шумовые бури и грозы. Согласно современным гипотезам, эти всплески объясняются плазменными колебаниями в ионосфере планеты.

Юпитер хранит ключи от многих тайн Солнечной системы. Около 4,5 млрд. лет тому назад, когда Солнечная система формировалась из вращающегося облака газов и пыли, ядро Юпитера, вероятно, зарождалось из льда и камней общей массой, превышающей в 15 раз земную. Давление солнечного света выталкивало атомы легких газов (водорода и гелия) из внутренней по отношению к орбите Юпитера части Солнечной системы, а притяжение больших ледяных ядер нашего гиганта и зарождавшегося по соседству Сатурна постаралось собрать эти атомы возле себя. Из гелия и водорода, в основном, и состоит атмосфера Юпитера сегодня. Юпитер "оброс" самой большой атмосферой среди всех планет, так как центральное внутреннее ядро его раньше достигло необходимой массы. Лик Юпитера, который мы видим, - это верхние слои его атмосферы.

Читайте также:

planetologia.ru

Размеры Юпитера | Астрономия, астрология, сонник

Солнечная система > Система Юпитер > Юпитер > Размеры Юпитера 

Размеры Юпитера впечатляют! Самая большая планета в Солнечной системе, газовый гигант Юпитер примерно в 318 раз массивнее Земли.  Если бы все другие планеты Солнечной системы объединить в одну «супер планету», размер Юпитера все равно был бы в два с половиной раза больше.

Радиус, диаметр и окружность Юпитера

Сравнение массы и размеров Юпитера и Земли

Юпитер имеет средний радиус 43,440.7 миль (69911 километров), около одной десятой того, что имеет Солнце. Однако, из-за его быстрого вращения - он совершает один оборот за 9,8 часов – форма планеты Юпитер становится выпуклой на экваторе, где диаметр составляет 88846 миль (142984 км). В противоположность этому, диаметр на полюсах только 83082 мили (133708 км). Это растянутая форма известна как сплющенный сфероид.

Сравнительные размеры Юпитера и других объектов

Длина экватора Юпитера составляет  272 946 мили (439 264 км), что в 10 раз превышает расстояние вокруг центральной линии Земли.

Поскольку Юпитер полностью состоит из газов, его поверхность считается равномерной. Таким образом, ему не хватает верхней и нижней точек – гор и долин.

Плотность, масса и объем Юпитера

Известный как газовый гигант, Юпитер состоит в основном из водорода и гелия. Он весит 1,9 х 1027 килограммов. Хотя он  значительно более массивней, чем Земля, это лишь пятая по плотности планета   в 1326 г/см3, так как Юпитер сделан из газа, а не из скал.

Объем Юпитера - 1.431.281.810.739.360 кубических километров, что в 1 321 раз больше, чем Земля.

Площадь поверхности этой огромной планеты - 23713907537 квадратных мили или 6.1419x1010 квадратных километров, в 120 раз больше, чем наша планета.

Структура Юпитера напоминает Солнце, но его размер должен быть в 75 раз больше, чтобы запустить процесс синтеза водорода, который питает звезду. Теперь вы знаете, каковы истинные размеры Юпитера.

Положение и движение Юпитера

Строение Юпитера

Поверхность Юпитера

o-kosmose.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики