Научный форум dxdy. Теневые фотоны


Теневые фотоны Дэвида Дойча .

Теневые фотоны Дэвида Дойча . [Sep. 28th, 2014|01:07 am]

Научная кунсткамера

Из книги "Структура реальности".... Мне кажется, или у теорфизика Дэвида Дойча какой-то уж больно упорото-художественный взгляд на двухщелевой опыт и Эверетта?

Если я ошибаюсь и зазря "гоню" на достойного человека , объясните в комментариях, чем триллион необнаружимых теневых фотонов отличаются от чайника Рассела и порекомендуйте литературу по теневым фотонам.

"... Таким образом, если фотоны не расщепляются на фрагменты и отклоняютсяот траектории не под действием других фотонов, то что же вызывает этоотклонение? Когда через аппарат проходит один фотон за раз, что можетпроходить через другие щели, чтобы помешать ему?Давайте подойдем к рассмотрению этого вопроса критически. Мыобнаружили, что когда один фотон проходит через этот аппарат,он проходит через одну щель, затем что-то воздействует на него,заставляя отклониться от своей траектории, и это воздействие зависит оттого, какие еще щели открыты;воздействующие объекты прошли через другие щели;воздействующие объекты ведут себя так же, как фотоны ...,... но они не видимы.С этого момента я буду называть воздействующие объекты "фотонами".

Именно фотонами они и являются, хотя на данный момент представляется, чтосуществует два вида фотонов, один из которых я временно назову реальнымифотонами, а другой теневыми фотонами.

Первые мы можем увидеть или обнаружитьс помощью приборов, тогда как вторые -- неосязаемы (невидимы): их можнообнаружить только косвенно через их воздействие на видимые фотоны. (Далее мыувидим, что между реальными и теневыми фотонами не существует особойразницы: каждый фотон осязаем в одной Вселенной и не осязаем во всехпараллельных Вселенных -- но я опережаю события). Пока мы пришли только ктому, что каждый реальный фотон находится под сопровождением эскорта теневыхфотонов и что при прохождении фотона через одну из четырех щелей некоторыетеневые фотоны проходят через три оставшиеся. Поскольку при измененииположения щелей (при условии, что они находятся в пределах луча) на экранепоявляются различные интерференционные картины, теневые фотоны должныпопадать на всю освещенную часть экрана, куда попадает реальный фотон.Следовательно, теневых фотонов гораздо больше, чем реальных. Сколько же их?Эксперименты не могут определить верхнюю границу этого числа, ноустанавливают приблизительную нижнюю границу. Максимальная площадь, которуюмы могли осветить с помощью лазера в лаборатории, составила околоквадратного метра, а минимальный достижимый размер отверстий мог быть околоодной тысячной миллиметра. Таким образом, возможно получить около 1012(одного триллиона) положений отверстий на экране. Следовательно, каждыйреальный фотон должен сопровождать, по крайней мере, триллион теневых.Таким образом, мы узнали о существовании бурлящего, непомерно сложногоскрытого мира теневых фотонов. Они распространяются со скоростью света,отскакивают от зеркал, преломляются линзами и останавливаются, встретивсветонепроницаемые барьеры или фильтры другого цвета. Однако они неоказывают никакого воздействия даже на самые чувствительные детекторы.Единственная вещь во вселенной, через которую можно наблюдать теневой фотон,-- это воздействие, которое он оказывает на реальный фотон, имсопровождаемый. В этом и заключается явление интерференции. Если бы не этоявление и не странные картины теней, которые мы наблюдаем, теневые фотоныбыли бы абсолютно незаметными."

Comments:

(Deleted comment)

По книге - автор связывает одно с другим. Там идея параллельных миров им продигается, Эверетт, и то,что геометрия способна влиять на пространство.

Я ничего не имею против, но мне почему-то кажется, что он или троллит таким образом,или играет на публику,любящую мистифицировать квантмех.

Ытирую:" Интерференция свойственна не только фотонам. Квантовая теорияпредсказывает, а эксперимент подтверждает, что интерференция происходит слюбой частицей. Так что каждый реальный нейтрон должны сопровождать массытеневых нейтронов, каждый электрон -- массы теневых электронов и т. д.Каждую из этих теневых частиц можно обнаружить лишь косвенно через еевоздействие на движение реального двойника."

(с.Дэвид Дойч)

"Физик Хью Эверетт первым ясно осознал (в 1957 году, через тридцать лет после того, как эта теория стала основой физики дробноатомных частиц), что квантовая теория описывает мультиверс. С тех самых пор бушевал спор о том, допускает ли эта теория какую-то другую интерпретацию (повторную интерпретацию, или формулировку, или модификацию и т.д.), по которой она описывает единственную вселенную, но продолжает правильно предсказывать результаты экспериментов. Другими словами, действительно ли принятие предсказаний квантовой теории вынуждает нас принять существование параллельных вселенных?

Мне кажется, что этот вопрос, а следовательно, и преобладающая тональность спора относительно этой проблемы имеет ошибочное направление.

Признаться, для физиков-теоретиков, подобных мне, допустимо и оправданно прикладывать огромные усилия, чтобы достичь понимания формальной структуры квантовой теории, но не за счет того, чтобы потерять из вида нашу главную цель -- понять реальность.

Даже если предсказания квантовой теории можно было бы каким-то образом получить, не ссылаясь на другие вселенные, отдельные фотоны все равно отбрасывали бы описанные мной тени. Даже ничего не зная о квантовой теории, можно увидеть, что эти тени не могут быть результатом какого-то одного случая движения фотона от фонарика к глазу наблюдателя.

Их нельзя совместить ни с одним объяснением только на основе тех фотонов, которые мы видим. Или только на основе перегородки, которую мывидим. Или только на основе видимой нами вселенной. Следовательно, еслилучшая теория, имеющаяся в распоряжении физиков, не ссылалась бы на параллельные вселенные, это просто значило бы, что нам нужна теория лучше, теория, которая ссылалась бы на параллельные вселенные, чтобы объяснить то,что мы видим."(с. Дэвид Дойч)

(Deleted comment)

Почему? Или, поставлю вопрос так: что не так с объяснением интерференции в "теневых фотонах"(и теневых частицах)?

(Deleted comment)

С этим я интуитивно согласна, но это надо объяснить. Иначе это "аргумент от "нехочу"

Почему, собственно, не может быть "теневых фотонов"? Чему - в области уже известного - их существование противоречит?

В физике ведь используется модель "виртуальных частиц", и никто не высказывается против этого.

(Deleted comment)

1. "Теневыми фотонами" Дойч называет частицы, которые влияют на видимые фотоны, точнее - на их поведение. Они обнаружимы, но лишь косвенно, по воздействию на своих видимых собратьев. Аналогично и со всеми другими частицами.

2. Потенциальную полезность гипотезы("Зачем вводить единорогов?") Дойч объясняет на примере борьбы геоцентрической и гелиоцентрической систем.Инквизиция считала Галлилейские выкладки "лишними" и "ненужными".

Цитата большая,не помещаетсся, но можно найти в тексте через поиск.http://www.lib.ru/FILOSOF/DOJCH/reality.txt

Почему "избыточные" теории лучше именно с практической стороны? Автор полемизирует с Вайнбергом(и другими инструменталистами) по этому поводу.

" Лауреат Нобелевской премии, физик Стивен Вайнберг, явноговорил с позиций инструментализма, когда следующим образом прокомментировалобъяснение гравитации Эйнштейном:"Важно иметь возможность предсказать картины звездного неба на фотоснимках астрономов, частоту спектральных линий и т. п., а то, припишем ли мы эти прогнозы физическому воздействию гравитационных полей на движение планет и фотонов [как это было в физике до Эйнштейна] или искривлению пространства и времени, просто не имеет значения." (Gravitation andCosmology, с. 147).

Вайнберг и другие инструменталисты ошибаются. То, чему мы приписываемизображения на фотошаблонах астрономов, имеет значение, и не только для физиков-теоретиков вроде меня, у которых желание в большей степени понять мир становится мотивацией для выражения теорий в виде формул и их изучения.

(Я уверен, что эта мотивация присуща и Вайнбергу: вряд ли его стимулируетодно лишь желание предсказать изображения и спектры!)

Дело в том, что даже для чисто практического применения прежде всего важны объяснительныевозможности теории, а уж потом, в качестве дополнения, - еепредсказательные возможности.

Если это вас удивляет, представьте, что на Земле появился инопланетный ученый и преподнес нам ультратехнологичный "предсказатель", который может предсказать результат любого эксперимента, но без каких-либо объяснений.

Если верить инструменталистам, то как только мы получим этот предсказатель, наши научные теории нам будут нужны разве что для развлечения. Но так ли это?

Каким образом предсказатель можно было бы использовать практически?

В некотором смысле предсказатель содержал бы знания, необходимые для того, чтобы построить, скажем, космический корабль.

Но насколько он бы пригодился нам при строительстве этого корабля, или при создании другого подобного предсказателя, или даже при усовершенствовании мышеловки?

Предсказатель всего лишь предсказывает результаты экспериментов.

Следовательно, чтобы получить возможность пользоваться предсказателем, нам,прежде всего, нужно знать, о результатах каких экспериментов его можно спрашивать."

Edited at 2014-09-28 04:21 pm (UTC)

Можно поставить вопрос и иначе: зачем вообще в теоризике вводятся виртуальны частицы?Этому есть свои разумные обоснованияhttps://ru.wikipedia.org/wiki/Виртуальная_частица

И тут опять же, два подхода...

Но дело не в этом. Мне не нравится не сам прагматический выбор Дойча в пользу "реального виртуального", а вызывает сомнения сам способ его популярной подачи...

Я сталкиваюсь с людьми,которые принимают конецепцию "теневых фотонов" как чуть ли не прямое свидетельство в пользу многомирья именно из-за такого стиля подачи материала у Дойча.

Когда свет -- это светлые фотоны, а там, где тень, там теневые. Очень хорошее выражение "теневой фотон"

Параллельные вселенные придумывают от отчаяния, потому что квантовая механика не поддаётся истолкованию.

Резковато Вы о "параллельниках"Линде, например, вполне няшен.

Допустим, мир один,но в нем "прячутся по сусекам" теневые фотоны.Будет ли это хорошим объяснением в этом случае?

Да кто ж его знает! Я пытаюсь истолковать квантовую механику, но тоже не могу, от этого у меня дурное настроение. Чем задаётся состояние -- волновым вектором или матрицей плотности? В первом случае у ЭПР-частицы нет состояния и оно возникает при измерении (и у второй ЭПР-частицы тоже), во втором случае состояние при измерении меняется (и у второй частицы тоже, хотя она далеко). Как это всё истолковать, не понимаю.

Если каким-нибудь способом определить через какую конкретно щель пролетает частица, то интерфереционная картинка изменится (вместо интерференции от двух щелей будет наложенные две интерференции от каждой из щелей). Если я правильно понимаю его идею с "теневыми" частицами, такого эффекта не будет.

science-freaks.livejournal.com

Помогите решить / разобраться (Ф)

На днях увидел у родных на полке труд Дэвида Дойча "Структура реальности". В связи с чем, задумался.Всем ясно, что товарищ Дойч, попытавшийся доказать существование параллельных вселенных и живущих там "теневых фотонов", хватил лишнего. Но вот с тем чтобы указать место, в котором автор не прав, у меня могут возникнуть трудности. Хотелось бы понять, в чём проблема с авторской интерпретацией двухщелевого эксперимента. Я попытаюсь разобраться, и если какая-то часть объяснения неверна, прошу поправить.

Итак. Тезисы Дойча примерно следующие:1. Если пустить свет от лазера на перегородку с длинными параллельными щелями, возникнет интерференционная картина.2. Интерференционная картина от четырёх щелей и от двух щелей при равном межщелевом расстоянии различна. В частности, световые полосы в четырёхщелевом эксперименте расположены вдвое реже. Есть места, куда в двухщелевом эксперименте попадал свет, а при добавлении ещё двух щелей свет туда попадать перестаёт.3. Если пустить на перегородку всего один фотон, интерференционная картина останется неизменной. В частности, упомянутый участок, тёмный для 4-щелевого случая, но освещённый для 2-щелевого таковым и останется.4. Фотон не разделяется на фрагменты, и не отклоняется под действием других фотонов. Но в этом эксперименте всё-таки на него воздействует что-то, что меняет его траекторию, и что зависит от количества открытых щелей.5. Это что-то взаимодействует с фотоном, летит со скоростью фотона, интерферирует с фотоном и ведёт себя как фотон. Очевидно, это - фотон. Но оно невидимое и не взаимодействует больше ни с чем, кроме данного фотона. Так что фотон этот мы будем называть теневым.6. Максимальная площадь, освещённый лазером, составила около квадратного метра, а минимальный достижимый размер отверстий мог быть около одной тысячной миллиметра. Таким образом, возможно получить около положений отверстий на экране. Следовательно, каждый реальный фотон должен сопровождать, по крайней мере, триллион теневых.7. Каждый теневой фотон не реагирует больше ни с чем из нашей вселенной, можно считать его пришельцем из параллельной вселенной. Т.о., вселенных этих как минимум . И каждый реальный фотон окружён свитой из теневых фотонов, которые заметны только благодаря явлению интерференции.8. Из этого следует много глубокомысленных выводов, но я их, пожалуй, опущу.

Для начала можно заметить, что чисто математически суммирование по огромному количеству фотонов, летающих по-разному, но в итоге складывающихся в одну картинку ничем не отличается от классического интегрирования по траекториям. То есть, математически совершенно неважно, что считать: миллиард фотонов или один, но пролетевший по миллиарду различных путей, сумма в обоих случаях будет одинакова. Таким образом, теневые фотоны могли бы использоваться как удобная (на самом деле нет) аналогия для одного фотона, летящего по всем мыслимым траекториям одновременно.Единственно этим и исчерпывается польза от этой теории. А вот вреда от неё много.

Во-первых, попытаемся вслед за автором оценить вероятное количество этих параллельных вселенных.Рассмотрим классический двухщелевой эксперимент. И вместо одиночного фотона, который непонятно что такое, используем банальный электрон. В том, что в двухщелевом эксперименте у электрона наблюдается интерференционная картина, думаю, никто не поспорит. Естественным будет считать, что интерференционная картина симметрична: мы ничего не знаем про повторяющееся из эксперимента в эксперимент нарушение симметрии. Это значит, что количество теневых электронов, пролетевших через одно отверстие, должно быть равно количеству теневых электронов, пролетевших через второе. Т.о., количество параллельных вселенных как минимум чётно. И так как интерференционная картина возникает, то вселенные эти одинаковы во всём, кроме траектории движения электрона.Аналогичным образом рассматривая трёхщелевой эксперимент можно показать, что количество параллельных вселенных делится на три, и так далее.В поисках правдоподобной оценки, вспомним, что основным экспериментом кристаллографии является рассеяние электронов на кристаллической решётке. Для образца толщиной 5 мм при характерных размерах атомного слоя 5 ангстрем количество слоёв составляет порядка . Исходя из чего, количество параллельных вселенных должно быть по меньшей мере . Что чуть больше предложенной автором цифры. Впрочем, если бы проблема была только в этом, то проблемы бы не было.

Во-вторых. Если мы вслед за автором решим, что в двухщелевом эксперименте половина электронов пролетает через одну щель, а половина - через вторую, то закрыв одну из щелей мы вдвое сократим количество теневых электронов. В самом деле, электрон, пусть даже теневой, не знает, в закрытую или открытую щель он летит. Если после одной щели поставить вторую, отсеяв ещё половину электронов, за ней третью, четвёртую - и так далее, то через некоторое количество щелей - в нашем случае по меньшей мере мы увидим, что интерференционная картина пропала, и электрон отныне проявляет только корпускулярные свойства. Однако это не так: кристаллографы подтвердят, что электроны, прошедшие через слоёв, в каждом из которых по решёток, вполне себе интерферируют, неважно при этом, сколь большая часть кристалла при этом закрыта.Более того, если электроны дифрагируют где бы то ни было ещё за пределами нашей лаборатории, то за миллиарды лет существования нашего мира случаев интерференции должны были накопиться. Сомнительно, чтобы к настоящему моменту осталось хоть сколько-нибудь теневых электронов, полностью идентичных натуральному. Что, впрочем, автор легко может объяснить чуть большим количеством параллельных вселенных.

Наконец, в-третьих. Нет никакого объяснения тому, что электроны, направленные в одну сторону и взаимодействующие с одинаковыми объектами (согласно авторскому замыслу, помимо теневых электронов в положенных местах есть теневая перегородка с теневыми щелями), ведут себя не одинаково. В конце-концов, нет никакого смысла придумывать теорию, объясняющую двухщелевой эксперимент без соотношения неопределённости, но при этом соотношением этим пользоваться. Не пользуясь неопределённостью, мы вынуждены считать, что траектории всех электронов однозначно определены, а так как параллельные вселенные ничем друг от друга не отличаются, то и электроны будут лететь по одной и той же линии со вполне предсказуемым финалом. Получается, автор уходя от одной проблемы поставил вторую, ни слова о ней не сказав. Если же автор предполагает, что неопределённость всё же имеет место, то теория его, ничего нового не предлагая, только усложняет расчёты.

dxdy.ru

"Теневые фотоны" Дойча : Помогите решить / разобраться (Ф)

Можете пояснить, что не так с теневыми фотонами?

Лишняя сущность, которая порождает больше проблем, чем решает. Вроде ангелов, двигающих планеты (которых Дойч в своей книге вполне справедливо критикует).

Но, думаю, надо понимать так, что фотон, летящий по миллиарду различных путей, - это бессмыслица: если мы попытаемся обнаружить этот фотон, то мы не увидим его одновременно в миллиарде разных точек пространства, а только в одной. Точнее, в разных вселенных мы увидим фотон в разных точках, но в каждой вселенной это будет одна точка.

Почему бессмыслица? Когда Вы смотрите на волны на воде и не обнаруживаете у них определённой траектории, это же не бессмыслица? Диссонанс возникает только от того, что "волны вероятности" мы наблюдаем косвенно, а почернение на фотопластинке напрямую. А если мы попытаемся обнаружить фотон, то вся интерференционная картина распадается. Почему так происходит, точка зрения Дойча тоже не даёт ответа.

Мне кажется, что в соответствии с бритвой Оккама многомировая интерпретация - самая простая.Понятие неопределённости применимо при рассмотрении отдельной вселенной, а не всего мультиверсума. Если рассматривать весь мультиверс как квантовую систему, то там нет неопределённости (унитарная эволюция) за счёт того, что нет одной единой траектории для всего мультиверса.

А бритву Оккама надо применять совместно с наблюдаемостью. Да, унитарная эволюция проще, чем она же, но с проективным постулатом. Вот только без последнего она не описывают наш наблюдаемый мир, не дают экспериментально проверяемых предсказаний. А если рассматривать унитарную эволюцию саму по себе, то проще считать, что имеем описание одной "частицы", а не бесчисленного множества параллельных миров.

Однако главный вопрос: "Почему и в какой вселенной мы окажемся, там где выпал орёл, или где выпала решка?" - многомировая интерпретация оставляет без ответа. Впрочем, и ни на один другой вопрос по существу не отвечает.

Во всех окажемся. По-моему это очевидно.Вы не поняли вопроса. Когда бросаете монету, у Вас всякий раз одновременно выпадают и орёл, и решка? Нет, что-либо одно (случаи "монета встала на ребро", "её сдуло ветром" и т.п. рассматриваем, как отдельные доп. альтернативы). Ведь главный вопрос: какая из альтернатив реализуется, что выпадет? Но теория предсказывает лишь вероятность того или иного исхода (а КМ ещё и утверждает принципиальноую неустранимость случайности). Точка зрения Дойча даёт что-то большее, как-то конструктивным образом уточняет механизм случайности и позволяет описать больший круг явлений, чем КМ? Позволяет за счёт уточнения условий уточнить структуру вероятности, узнать в каждом конкретном случае, что именно выпадет? - Нет. Поэтому, как Вам выше писали:

книга закрывается, и всякая болтовня из головы выкидывается.

Никакой другой новой теории (других уравнений и т. п.), требующей экспериментального подтверждения, там нет.

Собственно на этом можно было бы и закончить дискуссию: нет экспериментальных следствий - нет научной теории. А фантазировать, что там "за кулисами", каждый может как хочет. Уверяю Вас, "теория" мультивселенных из этих фантазий не самая примитивная.

Из того факта, что мы наблюдаем интерференцию частиц следует, что мы живём в мультиверсе

Только в том смысле, что при одних и тех же начальных условиях возможны альтернативные исходы. Во всех остальных смыслах - нет, не следует.

Если других вселенных нет, то квантовая механика неверна. В этой вселенной мы живём, поэтому и не дискутируем. Аналогично и с планетами и их спутниками (кроме Луны, на которой люди были), особенно экзопланетами: если окажется, что Марс, Венера и др. планеты не существуют, то наши теории неверны.

Похоже, Вы забыли о критериях, на соответствие которым проверяют научные теории, и поставили всё с ног на голову.

Теории проверяют на соответствие их предсказаний эксперименту, а не чьим-то фантазиям. КМ не предсказывает существование каких-либо иных Вселенных в том смысле, в каком существует наша Вселенная, в которой мы живём (и о существовании которой не дискутируем, как Вы любезно изволили согласиться), или в том смысле, в каком существуют планеты. У Вас смешение терминов, которое уже привело к подмене понятий. Вы здесь путаете (1) существование в смысле существования альтернативного исхода (элемента теоретической модели) и (2) существование в смысле существования элемента физической реальности (термин, конечно, изрядно потрёпан в связи с обсуждением известной статьи ЭПР, но всё же воспользуюсь им для краткости). В первом смысле, безусловно, альтернативы конечных состояний существуют, т.е., например, существуют взаимоисключающие возможности подброшенной монете выпасть орлом, решкой, встать на ребро и т.д. Никаких иных доказательств существования этих возможностей, кроме предсказаний нашей теории, нет и не нужно. Про этот смысл термина Вам писали выше другие участники. Во втором смысле утверждается наличие объекта, который может описываться нашей теорией, а может описываться и другими теориями, свойства которого проявляются как минимум в двух принципиально различных явлениях (т.е. объекта, который существует независимо от наших теорий и оказывает влияние на протекание наблюдаемых нами различных физических процессов). Планеты существуют во втором смысле, их свойства и поведение описываются несколькими независимыми теориями.

И судя по Вашим сообщениям, вы приравниваете существование "параллельных вселенных" к существованию планет, считаете, что они существуют в одном и том же смысле, т.е. совершили подмену понятий.

dxdy.ru

Дойч Девид. Структура реальности

   Это свойство появления света в виде шариков дискретных размеров называется квантованием. Отдельный шарик, фотон, называется квантом (во множественном числе кванты). Квантовая теория получила свое название от этого свойства, которое она приписывает всем измеримым физическим величинам, а не только количеству света или массе золота, которые квантуются, поскольку на самом деле состоят из частиц, хотя и выглядят непрерывными. Даже для такой величины, как расстояние (например, между двумя атомами), понятие непрерывного диапазона возможных величин оказывается идеализацией. В физике не существует измеримых непрерывных величин. В квантовой физике существует множество новых явлений, и, как мы увидим, квантование -- одно из простейших. Однако в некотором смысле оно остается ключом ко всем остальным явлениям, поскольку если все квантуется, каким образом может изменяться значение какой-то величины? Как объект попадает из одного места в другое, если не существует непрерывного диапазона промежуточных положений, где он может находиться по пути? В Главе 9 я объясню, как, но сейчас позвольте мне отложить этот вопрос на некоторое время и вернуться в область, близкую к фонарику, где луч выглядит непрерывным, потому что каждую секунду он испускает около 1014 (ста триллионов) фотонов в глаз, который на него смотрит.   Граница между светом и тенью резкая или существует некоторая серая область? Обычно существует довольно широкая серая область, и одна из причин ее существования показана на рисунке 2.3. Там показана темная область (называемая полной тенью), куда не доходит свет от нити накала. Там же присутствует и освещенная область, которая может получать свет от любого участка нити накала. И поскольку нить накала является не геометрической точкой, а имеет определенный размер, между освещенной и неосвещенной областью также присутствует полутень: область, которая может получать свет только от некоторых участков нити накала. Если наблюдать из области полутени, то можно увидеть только часть нити накала, и освещение будет меньше, чем в полностью освещенной области.   Рис. 2.3. Полная тень и полутень тени   Однако размер нити накала -- не единственная причина того, почему фонарик отбрасывает полутень. Различное влияние на свет оказывают рефлектор, расположенный позади лампочки, стеклянный колпак фонарика, различные стыки и дефекты и т. д. И поскольку сам фонарик достаточно сложен, мы ожидаем появления сложных картин света и тени. Но побочные свойства фонариков не являются предметом таких экспериментов. За нашим вопросом о свете фонарика скрывается более фундаментальный вопрос о свете вообще: существует ли, в принципе, некий предел резкости границы (другими словами, насколько узкой может быть полутень)? Например, если фонарик сделать из абсолютно черного (неотражающего) материала и если использовать все уменьшающиеся нити накала, возможно ли сужать полутень беспредельно?   Глядя на рисунок 2.3 можно подумать, что это возможно: если бы нить накала не имела размера, не было бы полутени. Но на рисунке 2.3 я сделал некоторое допущение относительно света, а именно, что свет распространяется только прямолинейно. Из повседневного опыта нам известно, что это так и есть, поскольку мы не видим волн. Но точные эксперименты показывают, что свет не всегда распространяется прямолинейно. При некоторых обстоятельствах свет искривляется.   Это сложно продемонстрировать с помощью фонарика, потому что сложно сделать крошечные нити накала и абсолютно черные поверхности. Эти практические сложности скрывают те ограничения, которые основная физика накладывает на резкость теней. К счастью, искривление света можно также показать по-другому. Предположим, что свет фонарика проходит через два последовательных маленьких отверстия в светонепроницаемых экранах, как показано на рисунке 2.4, и что проходящий через эти отверстия свет падает на третий экран. Вопрос состоит в следующем: если этот эксперимент повторять, уменьшая диаметр отверстий и увеличивая расстояние между первым и вторым экранами, можно ли беспредельно сужать полную тень (область абсолютной темноты) до тех пор, пока она не превратится в прямую линию между центрами двух отверстий? Может ли освещенная область между вторым и третьим экраном быть ограничена произвольно узким конусом? Говоря языком ювелиров, сейчас мы спрашиваем что-то вроде того, "насколько пластичен свет", в насколько тонкую нить можно растянуть свет? Из золота можно получить нити толщиной в одну десятитысячную миллиметра.   Рис. 2.4. Получение узкого луча света, проходящего через два последовательных отверстия   Оказывается, что свет не так пластичен, как золото! Задолго до того, как диаметр отверстий приблизится к десятитысячной доле миллиметра, а в действительности, уже при диаметре отверстий около одного миллиметра свет начинает оказывать заметное противодействие. Вместо того чтобы проходить через отверстия прямыми линиями, свет сопротивляется ограничению и распространяется за каждым отверстием. И распространяясь, свет "рассеивается". Чем меньше диаметр отверстия, тем сильнее свет рассеивается от прямолинейного пути. Появляются сложные картины света и тени. Вместо освещенной и темной областей с полутенью между ними на третьем экране мы видим концентрические кольца разной толщины и яркости. Кроме того, там присутствует цвет, так как белый свет состоит из фотонов разных цветов, каждый из которых распространяется и рассеивается немного по-разному. На рисунке 2.5 показана типичная картина, которую может образовать на третьем экране белый свет, пройдя через отверстия в первых двух экранах. Не забывайте, здесь всего лишь отбрасывается тень. Рисунок 2.5 -- это всего лишь тень, отброшенная вторым экраном, изображенным на рисунке 2.4. Если бы свет распространялся только прямолинейно, появилась бы только крошечная белая точка (гораздо меньше, чем яркое пятно в центре рисунка 2.5), окруженная очень узкой полутенью. Все остальное было бы полной тенью -совершенной темнотой.   Рис. 2.5. Картина света и тени, образованная белым светом после прохождения через маленькое круглое отверстие   Как бы ни озадачивало то, что лучи света искривляются, проходя через маленькие отверстия, я не считаю, что это нарушает сами основы. В любом случае, для наших настоящих целей важно, что свет действительно искривляется. Это означает, что тени вообще не должны выглядеть как силуэты предметов, которые их отбрасывают. Более того, дело даже не в размывании изображения, вызванном полутенью. Оказывается, что перегородка с отверстиями сложной формы может отбрасывать тень совершенно другой формы.   Рисунок 2.6 показывает приблизительно в натуральную величину часть картины тени, отбрасываемой светонепроницаемой перегородкой с двумя прямыми параллельными щелями, находящейся на расстоянии трех метров от экрана. Щели находятся на расстоянии одной пятой миллиметра друг от друга и освещаются прямым красным лучом лазера расположенного по другую сторону перегородки. Почему используется свет лазера, а не электрического фонарика? Только потому, что точная форма тени также зависит и от цвета света, который ее производит, белый свет фонарика содержит весь спектр видимых цветов, поэтому он может отбрасывать тени с интерференционными полосами различного цвета. Значит, для получения точной формы тени во время эксперимента лучше использовать свет одного цвета. Можно было бы поместить цветной фильтр (например, цветное оконное стекло) перед фонариком так, чтобы проходил свет только одного цвета. Это могло бы помочь, но фильтры не стопроцентно селективны. Лучше воспользоваться светом лазера, поскольку лазер можно очень точно настроить на испускание монохроматического света.   Рис. 2.6. Тень, отбрасываемая перегородкой с двумя прямыми параллельными щелями   Если бы свет распространялся прямолинейно, картина, изображенная на рисунке 2.6, представляла бы две ярких полосы с резкими границами, расположенные на расстоянии одной пятой миллиметра друг от друга (что было бы невозможно увидеть при таком масштабе), а остальная часть экрана осталась бы в тени. Но в действительности свет искривляется так, что образует много ярких и темных полос без резких границ. Если увеличить расстояние между щелями так, чтобы они оставались в пределах лазерного луча, расстояние между полосами на экране увеличится на столько же. В этом отношении тень ведет себя как обычная тень, отбрасываемая крупным предметом. А какую тень мы получим, если прорежем в перегородке между двумя существующими щелями еще две идентичные щели, так, что у нас будет четыре щели, расположенные на расстоянии одной десятой миллиметра друг от друга? Можно ожидать, что картина, изображенная на рисунке 2.6, останется практически неизменной. Как-никак первая пара щелей отбрасывает тени, показанные на рисунке 2.6, и, как я уже сказал, вторая пара щелей должна произвести подобную картину тени, сдвинутую в сторону на одну десятую миллиметра -- почти на том же самом месте. Кроме того, мы знаем, что лучи света пересекаются, не оказывая никакого воздействия друг на друга. Так что две пары щелей должны дать ту же самую картину тени, но в два раза ярче и чуть более размытую.   В действительности происходит нечто отличное. Действительная тень, отбрасываемая перегородкой с четырьмя прямыми параллельными щелями, показана на рисунке 2.7 (а). Для сравнения ниже я снова привожу рисунок тени от перегородки с двумя щелями (рисунок 2.7(b)). Ясно, что тень от четырех щелей представляет собой отнюдь не комбинацию двух слегка отдаленных друг от друга теней от двух щелей, а имеет новую и более сложную картину. В этой картине есть такие участки, как точка X. которая не освещена на картине тени от четырех щелей и освещена на картине тени от двух щелей. Эти участки освещались при наличии в перегородке двух щелей, но перестали освещаться, когда в перегородке прорезали еще две щели, пропускающие свет. Появление этих щелей воспрепятствовало попаданию света в точку X.   Рис. 2.7. Тени отбрасываемые перегородкой с (а) четырьмя и (b) двумя параллельными щелями   Таким образом, появление еще двух источников света затемняет точку X. а их удаление снова освещает ее. Каким образом? Можно представить два фотона, направляющиеся к точке Х и отскакивающие друг от друга как бильярдные шары. Только один из фотонов мог бы попасть в точку X, но они мешали друг другу, и потому ни один из них туда не попал. Скоро я покажу, что это объяснение не может быть истинным. Тем не менее, основной идеи избежать невозможно: через вторую пару щелей должно проходить что-то, препятствующее попаданию света из первой пары щелей в точку X. Но что? Это мы можем выяснить с помощью дальнейших экспериментов.   Во-первых, картина тени от перегородки с четырьмя щелями, изображенная на рисунке 2.7 (а), появляется только в том случае, если все четыре щели освещены лазерным лучом. Если освещены только две щели, появляется картина, соответствующая тени от двух щелей Еcли освещены три щели, появится картина тени от трех щелей которая в свою очередь будет отличаться от двух предыдущих. Таким образом, в луче света находится нечто, вызывающее интерференцию Картина тени от двух щелей также появляется, если две щели заполнить светонепроницаемым материалом, но она изменяется при заполнении этих щелей прозрачным материалом. Другими словами, интерференции препятствует нечто, препятствующее свету, это может быть даже что-то столь же несущественное, как туман. Но оно может пройти через все, что пропускает свет, даже через непроницаемый (для материи) алмаз. Если в аппарате расположить сложную систему зеркал и линз так, чтобы свет мог распространяться от каждой щели до конкретной точки на экране, то в этой точке наблюдалась бы часть картины тени от четырех щелей. Если конкретной точки достигает свет только от двух щелей, на экране мы увидим часть картины тени от двух щелей и т.д.   Таким образом, что бы ни вызывало интерференцию, оно ведет себя как свет. Оно присутствует в луче света, но отсутствует вне него. Оно отражается, передается или блокируется тем, что отражает, передает или блокирует свет. Возможно, вы удивитесь, почему я столь досконально разбираю этот вопрос. Абсолютно очевидно, что это свет то есть фотонам из одной щели мешают фотоны из других. Но, возможно вы поставите под сомнение очевидное после следующего эксперимента, расшифровки спектров.   Что нам ожидать при проведении этих экспериментов только с одним фотоном? Например, предположим, что наш фонарик расположен так далеко от экрана, что за целый день на экран попадает только один фотон. Что увидит наша лягушка, наблюдающая за экраном? Если то, что каждому фотону мешают другие фотоны, - правда, то не уменьшится ли интерференция, когда фотоны будут появляться реже? Не прекратится ли она вовсе, если через аппарат за раз будет проходить только один фотон? Мы по-прежнему можем ожидать появления полутеней, т. к. фотон при прохождении через щель может отклониться от своего курса (например, ударившись о край щели). Но на экране мы точно не должны увидеть участок, подобный точке X, который получает фотоны, когда открыты две щели, и становится темным когда открывают две другие.   Однако именно это мы и наблюдаем. Независимо от того, насколько редко появляются фотоны, картина тени остается неизменной. Даже при проведении эксперимента с появлением одного фотона за раз этот фотон не попадает в точку X. когда открыты все четыре щели. Но стоит только закрыть две щели, и вспышки в точке Х возобновляются.   Возможно ли, чтобы фотон расщеплялся на фрагменты, которые после прохождения через щели изменяли бы свою траекторию и рекомбинировались? Эту возможность мы тоже можем исключить. Если снова выпустить из аппарата один фотон и у каждой щели установить по детектору, то зарегистрировать сигнал сможет максимум один из них. Поскольку при подобном эксперименте никогда не наблюдались сигналы на двух детекторах одновременно, можно сказать, что обнаруживаемые ими объекты не расщепляются.   Таким образом, если фотоны не расщепляются на фрагменты и отклоняются от траектории не под действием других фотонов, то что же вызывает это отклонение? Когда через аппарат проходит один фотон за раз, что может проходить через другие щели, чтобы помешать ему?   Давайте подойдем к рассмотрению этого вопроса критически. Мы обнаружили, что когда один фотон проходит через этот аппарат,   он проходит через одну щель, затем что-то воздействует на него, заставляя отклониться от своей траектории, и это воздействие зависит от того, какие еще щели открыты;   воздействующие объекты прошли через другие щели;   воздействующие объекты ведут себя так же, как фотоны ...,   ... но они не видимы.   С этого момента я буду называть воздействующие объекты "фотонами". Именно фотонами они и являются, хотя на данный момент представляется, что существует два вида фотонов, один из которых я временно назову реальными фотонами, а другой теневыми фотонами. Первые мы можем увидеть или обнаружить с помощью приборов, тогда как вторые -- неосязаемы (невидимы): их можно обнаружить только косвенно через их воздействие на видимые фотоны. (Далее мы увидим, что между реальными и теневыми фотонами не существует особой разницы: каждый фотон осязаем в одной Вселенной и не осязаем во всех параллельных Вселенных -- но я опережаю события). Пока мы пришли только к тому, что каждый реальный фотон находится под сопровождением эскорта теневых фотонов и что при прохождении фотона через одну из четырех щелей некоторые теневые фотоны проходят через три оставшиеся. Поскольку при изменении положения щелей (при условии, что они находятся в пределах луча) на экране появляются различные интерференционные картины, теневые фотоны должны попадать на всю освещенную часть экрана, куда попадает реальный фотон. Следовательно, теневых фотонов гораздо больше, чем реальных. Сколько же их? Эксперименты не могут определить верхнюю границу этого числа, но устанавливают приблизительную нижнюю границу. Максимальная площадь, которую мы могли осветить с помощью лазера в лаборатории, составила около квадратного метра, а минимальный достижимый размер отверстий мог быть около одной тысячной миллиметра. Таким образом, возможно получить около 1012 (одного триллиона) положений отверстий на экране. Следовательно, каждый реальный фотон должен сопровождать, по крайней мере, триллион теневых.   Таким образом, мы узнали о существовании бурлящего, непомерно сложного скрытого мира теневых фотонов. Они распространяются со скоростью света, отскакивают от зеркал, преломляются линзами и останавливаются, встретив светонепроницаемые барьеры или фильтры другого цвета. Однако они не оказывают никакого воздействия даже на самые чувствительные детекторы. Единственная вещь во вселенной, через которую можно наблюдать теневой фотон, -- это воздействие, которое он оказывает на реальный фотон, им сопровождаемый. В этом и заключается явление интерференции. Если бы не это явление и не странные картины теней, которые мы наблюдаем, теневые фотоны были бы абсолютно незаметными.   Интерференция свойственна не только фотонам. Квантовая теория предсказывает, а эксперимент подтверждает, что интерференция происходит с любой частицей. Так что каждый реальный нейтрон должны сопровождать массы теневых нейтронов, каждый электрон -- массы теневых электронов и т. д. Каждую из этих теневых частиц можно обнаружить лишь косвенно через ее воздействие на движение реального двойника.   Следовательно, реальность гораздо больше, чем кажется, и большая ее часть невидима. Те объекты и события, которые мы можем наблюдать с помощью приборов, -- не более чем вершина айсберга.   Реальные частицы обладают свойством, которое дает нам право называть их совокупность Вселенной. Это определяющее свойство заключается просто в их реальности, то есть во взаимодействии друг с другом и, следовательно, в том, что их можно непосредственно обнаружить с помощью приборов и чувствительных датчиков, созданных из других реальных частиц. Из-за явления интерференции они не отделяются от остальной реальности (то есть, от теневых частиц) полностью. В противном случае мы бы никогда не узнали, что реальность -- это нечто большее, чем реальные частицы. Но в хорошем приближении они напоминают Вселенную, которую мы видим вокруг ежедневно, и Вселенную, на которую ссылается классическая (доквантовая) физика.   По тем же причинам мы могли бы назвать совокупность теневых частиц параллельной Вселенной, ибо теневые частицы оказываются под воздействием реальных частиц только через явление интерференции. Но мы можем сделать еще лучше. Оказывается, что теневые частицы разделяются между собой точно так же, как отделяется от них вселенная реальных частиц. Другими словами, они образуют не одну однородную параллельную вселенную, гораздо большую чем реальная, а огромное количество параллельных вселенных, каждая из которых по составу похожа на реальную и подчиняется тем же законам физики, но отличается от других расположением частиц.   Замечание относительно терминологии. Слово "вселенная" традиционно использовали для обозначения "всей физической реальности". В этом смысле может существовать не более одной вселенной. Придерживаясь этого определения, мы могли бы сказать, что то, что мы привыкли называть "вселенной", а именно: вся непосредственно ощутимая материя и энергия вокруг нас, все окружающее нас пространство, -- далеко не вся вселенная, а лишь небольшая ее часть. В этом случае нам пришлось бы придумать новое название для этой маленькой реальной части. Но большинство физиков предпочитает продолжать пользоваться словом "вселенная" для обозначения того, что оно всегда обозначало, несмотря на то, что сейчас эта сущность оказывается лишь маленькой частью физической реальности. Для обозначения физической реальности в целом создали неологизм -- мультиверс.   Опыты с интерференцией одной частицы, подобные описанным мной, показывают, что мультиверс существует и содержит множество двойников каждой частицы реальной вселенной. Чтобы прийти к следующему выводу о разделении мультиверса на параллельные вселенные, следует рассмотреть явление интерференции нескольких реальных частиц. Самый простой способ осуществить это -- спросить при "мысленном эксперименте", что должно происходить на микроскопическом уровне, когда теневые фотоны встречают светонепроницаемый объект. Безусловно, они останавливаются: мы знаем это, поскольку интерференция прекращается, когда на пути теневых фотонов появляется светонепроницаемая перегородка. Но почему? Что их останавливает? Мы можем исключить прямой ответ, что реальные атомы перегородки поглощают их так же, как поглотили бы реальные фотоны. Одно нам известно: теневые фотоны не взаимодействуют с реальными атомами. Кроме того, мы можем проверить, измерив атомы перегородки (или точнее, заменив перегородку детектором), что они не поглощают энергию и не изменяют свое состояние до тех пор, пока не встретят реальный фотон. Теневые фотоны не оказывают на них никакого влияния.   Другими словами, перегородка одинаково воздействует, как на реальные, так и на теневые фотоны, но эти два вида фотонов воздействуют на нее по-разному. В действительности, насколько нам известно, теневые фотоны вообще не оказывают на нее никакого воздействия. Это и является определяющим свойством теневых фотонов, поскольку, если бы они оказывали реальное воздействие хоть на какой-то материал, то этот материал можно было бы использовать как детектор теневых фотонов, а само явление теней и интерференции не существовало бы в том виде, в каком я его описал.   Следовательно, в месте существования реальной перегородки находится и теневая. Без особых усилий можно сделать вывод, что эта теневая перегородка состоит из теневых атомов, которые, как нам уже известно, должны присутствовать как двойники реальных атомов перегородки. У каждого реального атома существует множество двойников. В действительности, общая плотность теневых атомов даже в слабом тумане более чем достаточна, чтобы остановить танк, что уж говорить об одном фотоне, если бы эти атомы могли воздействовать на него. Поскольку мы обнаружили, что частично светопроницаемые перегородки имеют равную степень светопроницаемости как для реальных, так и для теневых фотонов, значит, не все теневые атомы на пути определенного теневого фотона могут помешать его движению. Каждый теневой фотон встречает перегородку, во многом подобную той, которую встречает его реальный двойник, перегородку, состоящую из крошечного количества существующих теневых атомов.   По той же причине каждый теневой атом в перегородке может взаимодействовать лишь с небольшим количеством других теневых атомов, находящихся около него, и те, с которыми он взаимодействует, образуют перегородку, весьма похожую на реальную. И так далее. Вся материя и все физические процессы имеют такую структуру. Если реальной перегородкой является сетчатка глаза лягушки, значит, должно быть много теневых сетчаток, каждая из которых способна остановить только одного теневого двойника каждого фотона. Каждая теневая сетчатка взаимодействует только с соответствующими теневыми фотонами, с соответствующей теневой лягушкой и т.д. Другими словами, частицы группируются в параллельные вселенные. Они "параллельны" в том смысле, что в пределах каждой вселенной частицы взаимодействуют друг с другом так же, как в реальной вселенной, но воздействие, оказываемое каждой вселенной на остальные, весьма слабое, и проявляется оно через явление интерференции.   Таким образом, мы вывели цепочку умозаключений, которая начинается со странных картин тени и заканчивается параллельными вселенными. На каждом этапе мы обнаруживаем, что поведение наблюдаемых нами объектов можно объяснить только присутствием невидимых объектов и их определенными свойствами. Основная идея заключается в том, что интерференция одной частицы определенно исключает возможность существования только реальной вселенной, которая нас окружает. А факт существования такого явления интерференции неоспорим. Тем не менее, теория существования мультиверса не пользуется особой популярностью у физиков. Почему?

thelib.ru

Дойч Девид. Структура реальности

   Ответ, к сожалению, окажется нелицеприятным для большинства. Я еще вернусь к этому в главе 13, но сейчас мне хотелось бы подчеркнуть, что аргументы, представленные мной в этой главе, обращены лишь к тем, кто ищет объяснений. Те, кого устраивают обычные предсказания и у кого нет особого желания понять, как получаются предсказанные результаты экспериментов, могут при желании просто отрицать существование всего, кроме того, что я называю "реальными" объектами. Некоторые люди, например, инструменталисты и позитивисты, принимают эту линию как сущность философского принципа. Я уже сказал, что я думаю о таких принципах и почему. Другие люди просто не хотят думать об этом. Как-никак, это столь грандиозный вывод, и он вызывает беспокойство, когда о нем слышишь впервые. Но я полагаю, что все эти люди ошибаются. Я надеюсь убедить читателей, которые терпеливо относятся ко мне. что понимание мультиверса -- это предварительное условие наилучшего возможного понимания реальности. Я говорю это не в духе суровой определенности искать истину независимо от того, насколько неприятной она может оказаться (хотя надеюсь, что приму и такую позицию, если до этого дойдет). Напротив, я говорю это потому, что итоговое мировоззрение намного более цельно и обладает гораздо большим смыслом, чем все предыдущие мировоззрения. Оно возвышается над циничным прагматизмом, который в наше время зачастую является суррогатом мировоззрения ученых.   "Почему нельзя просто сказать, -- спрашивают некоторые физики-практики, -- что фотоны ведут себя так, словно сталкиваются с невидимыми объектами? Почему нельзя оставить это в таком виде? Почему мы должны идти дальше и принимать теорию о существовании невидимых объектов?" Более экзотический вариант этой же по сути идеи заключается в следующем. "Реальный фотон осязаем, теневой фотон -- это просто способ возможного, но не осуществленного поведения реального фотона. Тогда квантовая теория заключается во взаимодействии реального с возможным". Это, по меньшей мере, звучит достаточно глубоко. Но, к сожалению, люди, которые придерживаются какого-то из этих взглядов (включая выдающихся ученых, которые должны бы быть лучше осведомлены), во всем, что касается этого вопроса, неизменно начинают нести чушь. Поэтому давайте будем рассудительными. Ключевой момент состоит в том, что реальный, видимый фотон ведет себя по-разному в соответствии с тем путем, который открыт где-то в аппарате, чтобы пропустить что-то, что, в конце концов, задержит видимый фотон. Что-то перемещается по этим путям, и отказаться называть это "реальным" все равно, что играть в слова. "Возможное" не может взаимодействовать с реальным: несуществующие объекты не могут изменять траекторию движения существующих. Если фотон отклоняется от своей траектории, на него должно что-то воздействовать, и это что-то я назвал "теневым фотоном". Название еще не делает это реальным, но не может быть, чтобы действительное событие, как-то: появление и обнаружение реального фотона, -- было вызвано воображаемым событием, тем, что фотон "мог сделать", но не сделал. Причиной других событий может стать только то, что действительно происходит. Если сложное движение теневых фотонов в эксперименте с интерференцией было бы просто возможностью, которая на самом деле не имела места, то наблюдаемое нами явление интерференции в действительности не произошло бы.   Причину того, что эффект интерференции обычно столь слаб, и его сложно обнаружить, можно найти в законах квантовой механики, которые им управляют. Существенны два частных следствия этих законов. Первое: каждая дробноатомная частица имеет двойников в других вселенных, и только эти двойники ей мешают. Любые другие частицы этих вселенных не оказывают на нее непосредственного воздействия. Следовательно, интерференцию можно наблюдать лишь в особых случаях, когда траектории частицы и ее теневых двойников расходятся и затем вновь сходятся (так же, как фотон и теневой фотон стремятся к одной и той же точке на экране). Даже время должно быть синхронизировано: если на одной из двух траекторий возникнет задержка, интерференция ослабнет или прекратится. Второе: для того, чтобы обнаружить интерференцию между любыми двумя вселенными, необходимо, чтобы между всеми их частицами, положение и другие свойства которых не идентичны, произошло взаимодействие. На практике это означает, что можно обнаружить интерференцию только между двумя очень похожими вселенными. Например, во всех описанных мною экспериментах интерферирующие вселенные отличаются положением только одного фотона. Если фотон при движении воздействует на другие частицы, и, в частности, если мы видим его, то эти частицы или наблюдатель тоже станут различными в различных вселенных. Если это так, то последующую интерференцию, включающую этот фотон, на практике невозможно будет обнаружить, потому что требуемое взаимодействие между всеми частицами, которые подверглись влиянию, будет слишком сложно обеспечить. Здесь я должен упомянуть, что стандартная фраза, описывающая этот факт, а именно: "наблюдение разрушает интерференцию", -весьма обманчива по трем причинам. Во-первых, она предполагает некоторое психокинетическое влияние сознательного "наблюдателя" на основные физические явления, хотя такого влияния не существует. Во-вторых, интерференция не "разрушается": ее просто (гораздо!) сложнее увидеть, потому что для этого необходимо управлять точным поведением гораздо большего количества частиц. И, в-третьих, не только "наблюдение", но и любое воздействие фотона на его окружение, зависящее от выбранной им траектории, делает то же самое.   Ради читателей, которые могли видеть другие формы изложения квантовой физики, я должен кратко показать связь между аргументами, приведенными мной в этой главе, и обычным способом представления этого предмета. Возможно, из-за споров, возникших среди физиков-теоретиков, традиционно отправной точкой была сама квантовая теория. Сначала теорию формулируют как можно точнее, а затем пытаются понять, что она говорит нам о реальности. Это единственный возможный подход к пониманию мельчайших деталей квантовых явлений. Но в отношении вопроса о том, состоит ли реальность из одной вселенной или из многих, этот подход излишне сложен. Именно поэтому в данной главе я отошел от него. Я даже не сформулировал ни одного постулата квантовой теории, я просто описал некоторые физические явления и сделал неизбежные выводы. Но если начинать с теории, существуют две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет равных себе в способности предсказывать результаты экспериментов даже при слепом использовании ее уравнений без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности. Спор заключается лишь в том, что именно. Физик Хью Эверетт первым ясно осознал (в 1957 году, через тридцать лет после того, как эта теория стала основой физики дробноатомных частиц), что квантовая теория описывает мультиверс. С тех самых пор бушевал спор о том, допускает ли эта теория какую-то другую интерпретацию (повторную интерпретацию, или формулировку, или модификацию и т.д.), по которой она описывает единственную вселенную, но продолжает правильно предсказывать результаты экспериментов. Другими словами, действительно ли принятие предсказаний квантовой теории вынуждает нас принять существование параллельных вселенных?   Мне кажется, что этот вопрос, а следовательно, и преобладающая тональность спора относительно этой проблемы имеет ошибочное направление. Признаться, для физиков-теоретиков, подобных мне, допустимо и оправданно прикладывать огромные усилия, чтобы достичь понимания формальной структуры квантовой теории, но не за счет того, чтобы потерять из вида нашу главную цель -- понять реальность. Даже если предсказания квантовой теории можно было бы каким-то образом получить, не ссылаясь на другие вселенные, отдельные фотоны все равно отбрасывали бы описанные мной тени. Даже ничего не зная о квантовой теории, можно увидеть, что эти тени не могут быть результатом какого-то одного случая движения фотона от фонарика к глазу наблюдателя. Их нельзя совместить ни с одним объяснением только на основе тех фотонов, которые мы видим. Или только на основе перегородки, которую мы видим. Или только на основе видимой нами вселенной. Следовательно, если лучшая теория, имеющаяся в распоряжении физиков, не ссылалась бы на параллельные вселенные, это просто значило бы, что нам нужна теория лучше, теория, которая ссылалась бы на параллельные вселенные, чтобы объяснить то, что мы видим.   Таким образом, принятие предсказаний квантовой теории заставляет нас принять существование параллельных вселенных? Не само по себе. Любую теорию мы всегда можем истолковать в соответствии с принципами инструменталистов так, что она не заставит нас принимать что-либо относительно реальности. Но это отступление. Как я уже сказал, чтобы узнать, что параллельные вселенные существуют, нам не нужны глубокие теории: об этом нам говорят явления интерференции одной частицы. Глубокие теории нужны нам, чтобы объяснить и предсказать такие явления -- рассказать: каковы другие вселенные, каким законам они подчиняются, как влияют друг на друга и как все это укладывается в теоретические основы других предметов. Именно это и делает квантовая теория. Квантовая теория параллельных вселенных -- это не задача, это решение. Это толкование нельзя назвать ненадежным и необязательным, исходящим из скрытых теоретических соображений. Это объяснение -единственно надежное объяснение -- замечательной и противоречащей интуиции реальности.   Пока я использовал временную терминологию, предполагающую, что одна из множества параллельных вселенных отличается от других тем, что она "реальна". Пришло время разорвать последнюю связь с классическим понятием реальности, основанном на существовании одной вселенной. Вернемся к нашей лягушке. Мы поняли, что история лягушки, которая смотрит на далекий от нее фонарик в течение многих дней, ожидая вспышку, которая появляется в среднем раз в день, -- еще не вся история, потому что должны также существовать теневые лягушки в теневых вселенных, сосуществующие с реальной лягушкой и тоже ждущие появления фотонов. Допустим, что нашу лягушку научили подпрыгивать при появлении вспышки. В начале эксперимента у реальной лягушки будет множество теневых двойников, и изначально все они будут похожи. Но уже через короткий промежуток времени они не будут так похожи. Невозможно, чтобы каждая лягушка увидела фотон мгновенно. Но событие, редкое в одной вселенной, является обычным в мультиверсе. В любой момент где-то в мультиверсе существует несколько вселенных, в каждой из которых в определенный момент фотон воздействует на сетчатку глаза лягушки, находящейся в этой вселенной. И эта лягушка подпрыгивает.   Почему же она подпрыгивает? Потому что в пределах своей вселенной она подчиняется тем же законам физики, что и реальная лягушка: на ее теневую сетчатку попал теневой фотон, принадлежащий этой вселенной. Одна из светочувствительных теневых молекул этой теневой сетчатки отреагировала появлением сложных химических изменений, на что, в свою очередь, отреагировал зрительный нерв теневой лягушки. В результате этого процесса в мозг теневой лягушки поступило сообщение, и у лягушки появилось ощущение, что она видит вспышку.   Или мне следует сказать "теневое ощущение того, что она видит вспышку"? Конечно, нет. Если "теневые" наблюдатели, будь то лягушки или люди, реальны, то все их ощущения тоже должны быть реальными. Когда они наблюдают то, что мы можем назвать теневым объектом, для них этот объект реален. Они наблюдают его при помощи тех же средств и в соответствии с тем же определением, что и мы, когда говорим, что вселенная, которую мы наблюдаем, "реальна". Понятие реальности относительно для данного наблюдателя. Поэтому объективно не существует ни двух видов фотонов, реального и теневого, ни двух видов лягушек, ни двух видов вселенных, одна из которых -- реальная, а все остальные -- теневые. В описании, которое я привел относительно образования теней или каких-то схожих явлений, не существует ничего, что разграничивает области "реальных" и "теневых" объектов, кроме простого допущения, что одна из копий "реальна". Говоря о реальных и теневых фотонах, я, очевидно, разделил их потому, что мы видим первые, но не вторые. Но кто "мы"? Пока я писал все это, множество теневых Дэвидов писали то же самое. Они тоже подразделяли фотоны на реальные и теневые; но среди фотонов, которые они называли теневыми, есть фотоны, которые я назвал "реальными", а те фотоны, которые они называли реальными, оказались среди тех, которые я назвал "теневыми".   Ни одна копия объекта не занимает привилегированного положения ни при объяснении теней, которое я только что изложил, ни во всем математическом объяснении квантовой теории. Субъективно я могу считать, что выделяюсь среди копий, поскольку я -- "реальный", поскольку я могу непосредственно воспринимать себя, а не других, но я должен смириться с тем, что все остальные копии чувствуют то же самое.   Многие из этих Дэвидов пишут эти же самые слова в это мгновение. У некоторых это получается лучше. А некоторые пошли выпить чашку чая.   ТЕРМИНОЛОГИЯ   Фотон -- световая частица.   Реальный/Теневой -- в целях объяснения только в этой главе, я назвал частицы этой вселенной реальными, а частицы других вселенных -- теневыми.   Мультиверс -- вся физическая реальность. В ней находится много параллельных вселенных.   Параллельные вселенные -- они "параллельны" в том смысле, что в пределах каждой вселенной частицы взаимодействуют друг с Другом так же, как и в реальной вселенной, но каждая вселенная оказывает на остальные весьма слабое влияние через явление интерференции.   Квантовая теория -- теория физики мультиверса.   Квантование -- свойство иметь дискретный (а не непрерывный) набор возможных значений. Квантовая теория получила название от допущения, что все измеряемые величины квантуются. Однако наиболее важным эффектом является не квантование, а интерференция.   Интерференция -- влияние; оказываемое частицей одной вселенной на своего двойника из другой вселенной. Интерференция фотона может стать причиной появления теней более сложной формы, чем просто силуэты препятствий, вызывающих их появление.   РЕЗЮМЕ   При экспериментах с интерференцией на картине тени могут присутствовать такие участки, которые перестают освещаться при появлении в перегородке новых щелей. Это остается неизменным, даже если эксперимент проводят с отдельными частицами. Цепочка рассуждений, основанных на этом факте, исключает возможность того, что вселенная, окружающая нас, -- это вся реальность. В действительности, вся физическая реальность, мультиверс, содержит огромное количество параллельных вселенных.   Квантовая физика -- одна из четырех основных нитей объяснения. Следующая основная нить -- это эпистемология, теория познания.   Глава 3. Решение задач   Я даже не знаю, что более странно: поведение самих теней или тот факт, что несколько картин света и тени могут заставить нас столь радикально изменить наши представления о структуре реальности. Доказательства, которые я привел в предыдущей главе, несмотря на свои противоречивые выводы, представляют собой типичный отрезок научного рассуждения. Стоит поразмышлять над характером этого рассуждения, которое само по себе является естественным явлением, по крайней мере, столь же удивительным и обширным, как и физика теней.   Тем, кто предпочел бы, чтобы структура реальности была более прозаичной, может показаться немного непропорциональным, даже нечестным, что такие грандиозные выводы могут последовать из того, что крошечное световое пятно окажется на экране здесь, а не там. Тем не менее, это действительно так, и это далеко не первый подобный случай в истории науки. В этом отношении открытие других вселенных очень напоминает открытие других планет древними астрономами. Прежде чем послать межпланетные научно-исследовательские станции на Луну и другие планеты, мы получили всю информацию о планетах из световых пятен (или другого излучения), которое наблюдали в одном месте, а не в другом. Рассмотрим, как было открыто первое определяющее свойство планет, которое отличает их от звезд. Если наблюдать за ночным небом в течение нескольких часов, можно увидеть, что звезды движутся вокруг определенной точки в небе. Траектория их движения остается постоянной, не изменяется и их положение относительно друг друга. Традиционное объяснение заключалось в том, что ночное небо -- это огромная "небесная сфера", которая вращается вокруг неподвижной Земли, а звезды -это либо отверстия в сфере, либо вкрапленные сияющие кристаллы. Однако среди тысяч световых точек, которые можно увидеть в небе невооруженным глазом, есть несколько самых ярких, которые остаются неподвижными в течение более долгих промежутков времени, словно прикрепленные к небесной сфере. Их блуждающее движение по небу более сложно. Их называют "планеты", от греческого слова "странник". Их блуждающее движение по небу стало признаком неадекватности объяснения, основанного на небесной сфере.   Последующие объяснения движения планет сыграли важную роль в истории науки. Гелиоцентрическая теория Коперника расположила планеты и Землю на круговых орбитах вокруг Солнца. Кеплер обнаружил, что орбиты -- скорее эллипсы, чем круги. Ньютон объяснил эллипсы через свой закон обратных квадратов сил тяготения, и впоследствии его теория помогла предсказать то, что взаимное гравитационное притяжение планет вызывает небольшие отклонения от эллиптических орбит. Наблюдение этих отклонений привело в 1846 году к открытию новой планеты, Нептун, -- одному из многих открытий, наглядно подтвердивших теорию Ньютона. Однако несколько десятилетий спустя общая теория относительности Эйнштейна предоставила нам принципиально новое объяснение тяготения на основе искривленного пространства и времени и, таким образом, вновь предсказала немного другое движение планет. Например, эта теория предсказала, что каждый год планета Меркурий будет отклоняться на одну десятитысячную градуса от положения, которое она должна занимать в соответствии с теорией Ньютона. Эта теория также показала, что свет звезд, проходящий близко с Солнцем, из-за тяготения будет отклонятся на величину, в два раза превышающую значение, предсказанное теорией Ньютона. Наблюдение этого отклонения Артуром Эддингтоном в 1919 году часто называют событием, из-за которого мировоззрение Ньютона утратило свою рациональную состоятельность. (Ирония состоит в том, что современные оценки точности эксперимента Эддингтона говорят о том, что такие выводы могли быть преждевременными). Эксперимент, который с тех пор повторяли с большой точностью, заключался в измерении положения пятен (изображений звезд, близких к нимбу Солнца во время солнечного затмения) на фотоснимке.   По мере того, как предсказания астрономов становились более точными, уменьшалась разница между тем, что предсказывали следующие друг за другом теории относительно объектов в ночном небе. Чтобы обнаружить разницу, приходилось строить еще более мощные телескопы и измерительные приборы. Однако объяснения, на которых были основаны эти предсказания, не совпадали. Напротив, как я только что доказал, революционные перемены следовали одна за другой. Таким образом, наблюдения даже меньших физических эффектов вызывали даже большие изменения в нашем мировоззрении. Следовательно, может показаться, что мы делаем грандиозные выводы, исходя из недостаточного количества доказательств. Что оправдывает такие выводы? Можно ли быть уверенным, что только из-за того, что звезда на фотошаблоне Эддингтона оказалась смещенной на доли миллиметра, пространство и время должны быть искривленными; или из-за того, что фотодетектор в определенном положении не регистрирует "удар" слабого света, должны существовать параллельные вселенные?   В самом деле, то, о чем я только что говорил, преуменьшает как слабость, так и косвенность всех результатов наблюдений. Дело в том, что мы не воспринимаем звезды, пятна на фотоснимках или любые другие внешние объекты и события непосредственно. Мы видим что-либо только тогда, когда изображение этого появляются на сетчатке наших глаз, но даже эти изображения мы не воспринимаем, пока они не вызовут электрические импульсы в наших нервных окончаниях и пока наш мозг не получит и не поймет эти импульсы. Таким образом, вещественное доказательство, из-за которого мы склоняемся к тому, чтобы принять одну теорию мировоззрения, а не другую, измеряется даже не в миллиметрах: оно измеряется в тысячных долях миллиметра (расстояние между нервными волокнами глазного нерва) и в сотых долях вольта (изменение электрического потенциала наших нервов, из-за которого мы чувствуем разницу в восприятии двух разных вещей). Однако мы не придаем равного значения всем нашим сенсорным ощущениям. При научных экспериментах мы заходим достаточно далеко, чтобы приблизиться к восприятию тех аспектов внешней реальности, которые, как нам кажется, могут нам помочь при выборе одной из конкурирующих теорий. Перед наблюдением мы решаем, где и когда нам следует наблюдать и что искать. Часто мы используем комплексные, специально спроектированные приборы, как-то: телескопы и фотоумножители. Но как бы ни сложны были эти приборы и как бы ни значительны были внешние причины, которым мы приписываем показания этих приборов, мы воспринимаем эти показания только через свои органы чувств. Мы не можем избежать этого, что мы -- люди -- маленькие создания с несколькими несовершенными каналами, через которые мы получаем информацию о том, что нас окружает. Мы интерпретируем эту информацию как свидетельство существования большой и сложной внешней вселенной (или мультиверса). Но когда мы пытаемся уравновесить это свидетельство, мы буквально не находим ничего, кроме слабого электрического тока, проникающего в наш мозг.   Что оправдывает те выводы, которые мы делаем из этих картин? Дело определенно не в логическом выведении. Ни из этих и ни из каких-нибудь других наблюдений нельзя доказать даже то, что внешняя вселенная или мультиверс вообще существует; что уж говорить о каком-то отношении к ней электрических токов, получаемых нашим мозгом. Все что мы воспринимаем, может быть иллюзией или сном. Как-никак иллюзии и сны -- обычное дело. Солипсизм, теорию о том, что существует один только разум, а то, что кажется внешней реальностью, -- не более чем сон этого разума, невозможно логически опровергнуть. Реальность может состоять из одного человека (возможно этим человеком будете вы), которому снится жизненный опыт. Или она может состоять из вас и меня. Или из планеты Земля и ее жителей. И если бы нам снились свидетельства -- любые свидетельства -- существования других людей, или других планет, или других вселенных, они ничего не доказали бы относительно того, сколько всего этого существует на самом деле.   Поскольку солипсизм и многие схожие теории логически совместимы с вашим восприятием любых возможных результатов наблюдений из них логически невозможно вывести ничего, что касалось бы реальности. Как же тогда я мог сказать, что наблюдаемое поведение теней "исключает" теорию о том, что существует только одна вселенная или что наблюдения солнечного затмения делают мировоззрение Ньютона "рационально несостоятельным"? Как это возможно? Если "исключение" не означает "опровержение", что оно означает? Почему нужно заставлять себя менять свое мировоззрение или вообще любое мнение из-за чего-то, что было "исключено" таким образом? Создается впечатление, что такая критика подвергает сомнению всю науку, любое рассуждение о внешней реальности, которое обращается к результатам наблюдений. Если научное рассуждение не равносильно последовательности логических выводов из того, что мы видим, чему оно равносильно? Почему мы должны принять его выводы?   Это называется "задачей индукции". Метод берет свое название от теории, которая на протяжении большей части истории науки являлась общепринятой теорией того, как работает наука. Теория заключалась в существовании математически недоказанной, меньшей, но, тем не менее достойной внимания формы доказательства, называемой индукцией. С одной стороны, индукции противостояли предположительно совершенные доказательства, предоставленные дедукцией, а с другой стороны, предположительно более слабые философские или интуитивные формы рассуждения, не имевшие даже результатов наблюдений, которые поддержали бы их. В индуктивной теории научного знания наблюдения играют двоякую роль: сначала -- при открытии научных теорий, затем -- при их доказательстве. Предполагается, что теорию открывают, "экстраполируя" или "обобщая" результаты наблюдений. Тогда, если множество наблюдений соответствует теории и ни одно из них не отклоняется от нее, теорию считают доказанной -- более верной, вероятной или надежной. Схема индукции показана на рисунке 3.1.

thelib.ru

Читать книгу Структура реальности. Наука параллельных вселенных Дэвида Дойча : онлайн чтение

Текущая страница: 4 (всего у книги 29 страниц) [доступный отрывок для чтения: 8 страниц]

Хорошо, но если фотоны не расщепляются на фрагменты и не меняют траекторию под действием других фотонов, то что же их отклоняет? Когда через прибор проходит по одному фотону за раз, что проникает через другие щели, создавая ему помехи?

Подведем итог. Мы обнаружили, что, когда один фотон проходит через наш прибор:

• он проходит через одну из щелей, а затем что-то воздействует на него, заставляя отклониться от своей траектории, и это отклонение зависит от того, какие еще щели открыты;

• воздействующие агенты прошли через какие-то из оставшихся щелей;

• воздействующие агенты ведут себя в точности так же, как фотоны…

• …но их невозможно увидеть.

С этого момента я буду называть воздействующие объекты «фотонами». Именно фотонами они и являются, хотя в данный момент кажется, что существует два вида фотонов, один из которых я временно назову реальными фотонами, а другой – теневыми фотонами. Первые мы можем увидеть или обнаружить с помощью приборов, тогда как вторые – неосязаемы (невидимы): их можно обнаружить только косвенно по их воздействию на видимые фотоны. (Далее мы увидим, что между реальными и теневыми фотонами нет особой разницы: каждый фотон осязаем в одной вселенной и не осязаем во всех остальных, параллельных вселенных – но я забегаю вперед.) Пока мы пришли только к тому, что каждый реальный фотон сопровождают фотоны свиты, или теневые фотоны, и что при прохождении фотона через одну из четырех щелей некоторые теневые фотоны проходят через три оставшиеся. Поскольку возникают разные интерференционные картины, если мы прорезаем щели в других местах экрана, но все еще в пределах луча, теневые фотоны должны попадать на всю освещенную часть экрана, когда на него попадает реальный фотон. Следовательно, теневых фотонов гораздо больше, чем реальных. Сколько же их? Эксперименты не могут ограничить это число сверху, но дают приблизительную нижнюю границу. Максимальная площадь, которую мы можем легко осветить с помощью лазера в лаборатории, составляет около одного квадратного метра, а минимальный достижимый размер отверстий может быть около 0,001 мм. Таким образом, существует около 1012 (одного триллиона) возможных положений отверстий на экране. Следовательно, каждый реальный фотон должен сопровождаться по крайней мере триллионом теневых.

Таким образом, мы пришли к выводу о существовании бурлящего, непомерно сложного скрытого мира теневых фотонов. Они летят со скоростью света, отражаются от зеркал, преломляются линзами и останавливаются, встретив светонепроницаемые барьеры или фильтры неподходящего цвета. Однако они не оказывают никакого воздействия даже на самые чувствительные детекторы. Единственная вещь во вселенной, по воздействию на которую можно наблюдать теневой фотон, – это сопровождаемый им реальный фотон. Это явление называется интерференцией. Если бы не это явление и не странные картины теней, по которым мы его обнаруживаем, теневые фотоны были бы абсолютно незаметными.

Интерференция свойственна не только фотонам. Квантовая теория предсказывает, а эксперимент подтверждает, что ей подвержены любые частицы. Так что каждый реальный нейтрон должны сопровождать войска теневых нейтронов, каждый электрон – войска теневых электронов и т. д. Каждую из этих теневых частиц можно обнаружить лишь косвенно по ее воздействию на движение реального партнера.

Отсюда вытекает, что реальность гораздо обширнее, чем кажется, и большая ее часть невидима. Те объекты и события, которые мы и наши приборы можем наблюдать непосредственно, – не более чем вершина айсберга.

Реальные частицы обладают свойством, которое дает нам право называть их совокупность вселенной. Это определяющее свойство заключается просто в их реальности, то есть во взаимодействии друг с другом и, следовательно, в том, что их можно непосредственно обнаружить с помощью приборов и органов чувств, созданных из других реальных частиц. Из-за явления интерференции они не отделены полностью от остальной реальности (то есть от теневых частиц). В противном случае мы бы никогда не узнали, что реальность – это нечто большее, чем реальные частицы. Но с хорошей степенью приближения они напоминают Вселенную, которую мы видим вокруг ежедневно, и ту Вселенную, на которую ссылается классическая (доквантовая) физика.

По сходным причинам можно было бы предложить назвать совокупность теневых частиц параллельной вселенной, ибо теневые частицы также испытывают воздействие реальных частиц только через явление интерференции. Но мы можем сделать еще лучше. Оказывается, теневые частицы отделены друг от друга точно так же, как отделяется от них вселенная реальных частиц. Другими словами, они образуют не единственную однородную параллельную вселенную, намного превосходящую реальную, а огромное количество параллельных вселенных, каждая из которых по составу похожа на реальную и подчиняется тем же законам физики, но отличается тем, что в каждой из них частицы находятся в других положениях.

Нужно сделать замечание относительно терминологии. Слово «вселенная» традиционно использовали для обозначения «всей физической реальности». В этом смысле может существовать не более одной вселенной. Мы можем и далее придерживаться этого определения и утверждать, что то, что мы привыкли называть нашей Вселенной, а именно: все непосредственно ощутимое вещество и энергия вокруг нас, и все окружающее нас пространство – далеко не вся вселенная, а лишь небольшая ее часть. В этом случае нам пришлось бы придумать новое название для этой маленькой реальной части. Но большинство физиков предпочитает продолжать пользоваться словом «вселенная» для обозначения того, что оно всегда обозначало, несмотря на то что сейчас эта сущность оказывается лишь маленькой частью физической реальности. Для обозначения физической реальности в целом было придумано новое слово – мультивселенная, или мультиверс.

Опыты с интерференцией одной частицы, подобные описанным мной, показывают, что мультиверс существует и содержит множество партнеров каждой частицы реальной вселенной. Чтобы прийти к следующему выводу о разделении мультиверса на параллельные вселенные, следует рассмотреть явление интерференции более чем одной реальной частицы. Самый простой способ осуществить это – спросить посредством «мысленного эксперимента», что должно происходить на микроскопическом уровне, когда теневые фотоны встречают непрозрачный объект. Безусловно, они останавливаются: мы знаем это, поскольку интерференция прекращается, когда на пути теневых фотонов появляется светонепроницаемая перегородка. Но почему? Что их останавливает? Мы можем исключить прямолинейный ответ, что реальные атомы перегородки поглощают их так же, как поглотили бы реальные фотоны. Во-первых, нам известно, что теневые фотоны не взаимодействуют с реальными атомами. Во-вторых, мы можем проверить, измерив атомы перегородки (или точнее, заменив перегородку детектором), что они не поглощают энергию и никоим образом не изменяют свое состояние, пока не встретят реальный фотон. Теневые фотоны не оказывают на них никакого влияния.

Другими словами, перегородка одинаково воздействует как на реальные, так и на теневые фотоны, но на нее эти два вида фотонов воздействуют по-разному. В действительности, насколько нам известно, теневые фотоны вообще не оказывают на нее никакого воздействия. На самом деле это и является определяющим свойством теневых фотонов, потому что если бы они оказывали видимое воздействие хоть на какой-то материал, то этот материал можно было бы использовать как детектор теневых фотонов, а само явление теней и интерференции не существовало бы в том виде, в каком я его описал.

Следовательно, в месте существования реальной перегородки находится и теневой барьер некоторого вида. Без особых усилий можно сделать вывод, что эта теневая перегородка состоит из теневых атомов, которые, как нам уже известно, должны присутствовать как партнеры реальных атомов перегородки. У каждого реального атома существует множество таких партнеров. Действительно, общая плотность теневых атомов даже в слабом тумане была бы более чем достаточна, чтобы остановить танк, что уж говорить об одном фотоне, если бы эти атомы могли воздействовать на него. Поскольку мы обнаружили, что частично прозрачные перегородки имеют равную степень светопроницаемости как для реальных, так и для теневых фотонов, значит, не все теневые атомы на пути определенного теневого фотона могут помешать его движению. Каждый теневой фотон встречает перегородку, во многом подобную той, которую встречает его реальный партнер, – перегородку, состоящую лишь из небольшой доли существующих теневых атомов.

По той же причине каждый теневой атом в перегородке может взаимодействовать лишь с небольшой долей других теневых атомов, находящихся около него, и те, с которыми он взаимодействует, образуют перегородку, весьма похожую на реальную. И так далее. Всё вещество и все физические процессы имеют такую структуру. Если реальным барьером является сетчатка глаза лягушки, значит, должно быть много теневых сетчаток, каждая из которых способна остановить только одного теневого партнера каждого фотона. Каждая теневая сетчатка сильно взаимодействует только с соответствующими теневыми фотонами, с соответствующей теневой лягушкой и т. д. Другими словами, частицы группируются в параллельные вселенные. Они «параллельны» в том смысле, что в пределах каждой вселенной частицы взаимодействуют друг с другом так же, как в реальной вселенной, но воздействие, оказываемое каждой вселенной на остальные, весьма слабое, и реализуется оно через явление интерференции.

Таким образом, мы построили цепочку умозаключений, которая начинается со странной структуры теней и заканчивается параллельными вселенными. На каждом этапе мы обнаруживаем, что поведение наблюдаемых нами объектов можно объяснить только присутствием невидимых объектов, которые имеют вполне определенные свойства. Ключевая идея заключается в том, что явление интерференции одиночной частицы определенно исключает возможность того, что существует одна лишь реальная вселенная, которая нас окружает. Никто не отрицает, что такое явление интерференции существует. Тем не менее лишь немногие физики признают существование мультиверса. Почему?

Ответ, к сожалению, выставляет большинство не в лучшем свете. Я еще вернусь к этому в главе 13, но сейчас мне хотелось бы подчеркнуть, что доводы, представленные мной в этой главе, обращены лишь к тем, кто ищет объяснений. Те, кого устраивают обычные предсказания и у кого нет особого желания понять, как получаются предсказанные результаты экспериментов, могут при желании просто отрицать существование всего, за исключением того, что я называю «реальными» объектами. Некоторые люди, например, инструменталисты и позитивисты, принимают эту линию исходя из философского принципа. Я уже сказал, что думаю о таких принципах и почему. Другие люди просто не хотят думать об этом. Как-никак это очень сильный вывод, и он вызывает большое беспокойство, когда о нем слышишь впервые. Но я полагаю, что все эти люди ошибаются. Я надеюсь убедить читателей, которые готовы меня терпеть, что понимание мультиверса – это непременное условие для достижения наилучшего возможного понимания реальности. Я говорю это не в духе суровой решимости искать истину независимо от того, насколько неприятной она может оказаться (хотя надеюсь, что я принял бы и такую истину, если бы до этого дошло). Напротив, я говорю это потому, что такое мировоззрение намного целостнее и гораздо осмысленнее, чем все прежние мировоззрения. Оно определенно возвышается над циничным прагматизмом, который в наше время слишком часто служит для ученых суррогатом мировоззрения.

«Почему мы не можем просто сказать, – спрашивают некоторые физики-прагматики, – что фотоны ведут себя так, словно взаимодействуют с невидимыми сущностями? Почему нельзя на этом и остановиться? Почему мы должны идти дальше и занимать определенную позицию относительно существования невидимых объектов?» Более экзотический вариант этой же по существу идеи заключается в следующем: «Реальный фотон осязаем, теневой фотон – это просто вариант поведения реального фотона, который был возможен, но не осуществился. Таким образом, квантовая теория описывает взаимодействие реального с возможным». Это, по меньшей мере, звучит достаточно глубокомысленно. Но, к сожалению, люди, которые выбирают любой из этих взглядов (включая выдающихся ученых, которые должны бы быть лучше осведомлены), с этого места неизменно начинают нести чушь. Поэтому давайте будем рассудительными. Ключевой момент состоит в том, что реальный, видимый и ощутимый фотон ведет себя по-разному в зависимости от того, какие пути открыты где-то там в экспериментальной установке, ибо что-то движется рядом с ним и в конце концов перехватывает видимый фотон. Что-то действительно перемещается по этим путям, и отказаться называть его «реальным» – это просто играть в слова. «Возможное» не может взаимодействовать с реальным: несуществующие сущности не могут изменять траекторию движения существующих. Если фотон отклоняется от своей траектории, на него должно что-то воздействовать, и это что-то я назвал «теневым фотоном». Конечно, присвоение имени не делает вещь реальной, но не может быть, чтобы действительное событие, такое как приход и регистрация реального фотона, было вызвано воображаемым событием – тем, что фотон «мог бы сделать», но не сделал. Только то, что действительно происходит, может стать причиной других реальных событий. Если сложные движения теневых фотонов в эксперименте с интерференцией были бы просто возможностью, которая на самом деле не реализовалось, то и наблюдаемое нами явление интерференции в действительности не имело бы места.

Причину того, что эффект интерференции обычно столь слаб и трудно обнаружим, можно найти в законах квантовой механики, которые им управляют. Существенны два частных вывода из этих законов. Во-первых, каждая субатомная частица имеет партнеров в других вселенных и интерферирует только с этими партнерами. Любые другие частицы этих вселенных не оказывают на нее непосредственного воздействия. Следовательно, интерференцию можно наблюдать лишь в особых случаях, когда траектории частицы и ее теневых партнеров расходятся и затем вновь сходятся (когда, например, фотон и теневой фотон стремятся к одной и той же точке на экране). Даже время должно быть правильным: если на одной из двух траекторий организовать задержку, интерференция ослабнет или прекратится. Во-вторых, для того, чтобы обнаружить интерференцию между любыми двумя вселенными, необходимо, чтобы произошло взаимодействие между всеми их частицами, положение и другие свойства которых не идентичны. На практике это означает, что интерференция будет достаточно сильна для того, чтобы ее можно было обнаружить только между двумя очень похожими вселенными. Например, во всех описанных мною экспериментах интерферирующие вселенные отличаются положением только одного фотона. Если фотон при движении воздействует на другие частицы, и в особенности если мы наблюдаем его, то эти частицы или наблюдатель тоже станут различными в разных вселенных. Если это так, то последующую интерференцию с участием этого фотона на практике невозможно будет обнаружить, потому что требуемое взаимодействие между всеми частицами, которые подверглись влиянию, будет слишком сложно обеспечить. Здесь я должен упомянуть, что стандартная фраза, описывающая этот факт, а именно – «наблюдение разрушает интерференцию», – весьма обманчива, причем сразу в трех отношениях. Во-первых, она предполагает некоторое психокинетическое влияние сознательного «наблюдателя» на фундаментальные физические явления, хотя такого влияния не существует. Во-вторых, интерференция не «разрушается»: ее просто (гораздо!) сложнее увидеть, потому что для этого необходимо управлять точным поведением гораздо большего количества частиц. И, в-третьих, не только «наблюдение», но и любое воздействие фотона на его окружение, которое зависит от выбранной им траектории, приводит к тому же результату.

Ради блага читателей, которые могли видеть другие описания квантовой физики, я должен кратко показать связь между рассуждением, приведенным мной в этой главе, и обычным способом подачи этого предмета. Возможно, из-за споров, возникших среди физиков-теоретиков, традиционно отправной точкой является сама квантовая теория. Сначала теорию пытаются изложить как можно точнее, а уже затем – понять, что она говорит нам о реальности. Это единственный возможный подход, если нужно прийти к пониманию мельчайших деталей квантовых явлений. Но в отношении вопроса о том, состоит ли реальность из одной вселенной или из многих, этот подход излишне сложен. Именно поэтому в данной главе я ему не следовал. Я даже не сформулировал ни одного постулата квантовой теории, а просто описал некоторые физические явления и сделал неизбежные выводы. Но если начинать с теории, существует две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет себе равных в способности предсказывать результаты экспериментов даже при слепом использовании ее уравнений без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности. Спор заключается лишь в том, что именно.

Хью Эверетт6   Хью Эверетт (1930–1982) – американский физик и специалист по математическому моделированию. Первым предложил многомировую интерпретацию квантовой физики. – Прим. ред.

[Закрыть] первым ясно осознал (в 1957 году, примерно через тридцать лет после того, как эта теория стала основой физики субатомных частиц), что квантовая теория описывает мультивселенную. С того времени не утихает спор о том, допускает ли эта теория какую-то другую интерпретацию (или реинтерпретацию, или переформулировку, или модификацию и т. д.), согласно которой она описывала бы единственную вселенную, но продолжала бы правильно предсказывать результаты экспериментов. Другими словами, действительно ли принятие предсказаний квантовой теории вынуждает нас принять существование параллельных вселенных?

Мне кажется, что этот вопрос, а следовательно, и преобладающая тональность спора относительно этой проблемы имеет характер упорного заблуждения. Признаться, для физиков-теоретиков, подобных мне, допустимо и оправданно прикладывать огромные усилия, чтобы достичь понимания формальной структуры квантовой теории, но не за счет того, чтобы потерять из вида нашу главную цель – понять реальность. Даже если предсказания квантовой теории можно каким-то образом получить, не ссылаясь на другие вселенные, отдельные фотоны все равно будут отбрасывать описанные мной тени. И без знания квантовой теории ясно, что эти тени не могут быть результатом любой отдельно взятой истории фотона, описывающей его движение от фонарика к глазу наблюдателя. Они несовместимы ни с одним объяснением, рассматривающим только те фотоны, которые мы видим. Или только те перегородки, которые мы видим. Или только видимую нами вселенную. Следовательно, если наилучшая теория из тех, что были в распоряжении физиков, не ссылалась на параллельные вселенные, это просто значит, что нам понадобится теория получше, которая будет ссылаться на параллельные вселенные, чтобы объяснить то, что мы видим.

Означает ли это, что принятие предсказаний квантовой теории заставляет нас принять и существование параллельных вселенных? Само по себе – нет. Любую теорию мы всегда можем истолковать в духе инструментализма – так, чтобы она не заставляла нас признавать что-либо относительно реальности. Но спор-то не об этом. Как я уже сказал, чтобы узнать, что параллельные вселенные существуют, нам не нужны глубокие теории: об этом нам говорит явление интерференции с участием одной частицы. Глубокие теории нужны нам, чтобы объяснить и предсказать такие явления – рассказать, каковы эти другие вселенные, каким законам они подчиняются, как влияют друг на друга и как все это укладывается в теоретические основы других предметов. Именно это и делает квантовая теория. Квантовая теория параллельных вселенных – это не проблема, это решение. Она не является некой сомнительной и факультативной интерпретацией, проистекающей из заумных теоретических соображений. Она является объяснением – и единственно логичным объяснением – замечательной и контринтуитивной реальности.

До сих пор я использовал условные термины, подразумевающие, что одна из множества параллельных вселенных отличается от других тем, что она «реальна». Пришло время разорвать последнюю связь с классическим понятием реальности, основанным на существовании одной вселенной. Вернемся к нашей лягушке. Мы поняли, что история лягушки, которая смотрит на далекий от нее фонарик в течение многих дней, ожидая вспышку, которая появляется в среднем раз в день, – еще не вся история, потому что должны также существовать теневые лягушки в теневых вселенных, сосуществующие с реальной лягушкой и тоже ждущие появления фотонов. Допустим, что нашу лягушку научили подпрыгивать при появлении вспышки. В начале эксперимента у реальной лягушки будет множество теневых партнеров, и изначально все они будут похожи. Но уже вскоре похожими между собой будут не все. Маловероятно, чтобы каждая лягушка увидела фотон немедленно после начала эксперимента. Но событие, редкое в одной вселенной, является обычным в мультиверсе в целом. В любой момент где-то в мультиверсе существует несколько вселенных, в которых один из фотонов воздействует на сетчатку глаза лягушки, находящейся в этой вселенной. И эта лягушка подпрыгивает.

Почему же она подпрыгивает? Потому что в пределах своей вселенной она подчиняется тем же законам физики, что и реальная лягушка: на ее теневую сетчатку попал теневой фотон, принадлежащий этой вселенной. Одна из светочувствительных теневых молекул этой теневой сетчатки отреагировала сложными химическими изменениями, на что, в свою очередь, отреагировал зрительный нерв теневой лягушки. Он передал сообщение в мозг теневой лягушки, которая, следовательно, испытала ощущение, что она видит вспышку.

Но, быть может, мне следует сказать «теневое ощущение того, что она видит вспышку»? Конечно, нет. Если «теневые» наблюдатели, будь то лягушки или люди, реальны, то все их ощущения тоже должны быть реальными. Когда они наблюдают то, что мы могли бы назвать теневым объектом, для них этот объект реален. Они наблюдают его при помощи тех же средств и в соответствии с тем же определением, что и мы, когда мы говорим, что вселенная, которую мы наблюдаем, «реальна». Понятие реальности относительно для данного наблюдателя. Поэтому объективно не существует ни двух видов фотонов, реального и теневого, ни двух видов лягушек, ни двух видов вселенных, из которых лишь одна – реальная, а все остальные – теневые. В описании, которое я привел относительно образования теней или каких-то схожих явлений, не существует ничего, позволяющего различить «реальные» и «теневые» объекты, кроме простого допущения, что одна из копий «реальна». Когда я вводил понятия реальных и теневых фотонов, я явным образом разделил их, сказав, что мы видим первые, но не вторые. Но кто такие «мы»? Пока я писал все это, множество теневых Дэвидов Дойчей писали то же самое. Они тоже подразделяли фотоны на реальные и теневые; но среди фотонов, которые они называли теневыми, были те, которые я назвал «реальными», а те фотоны, которые они называли реальными, оказались среди тех, которые я назвал «теневыми».

Ни одна из копий какого-либо объекта не занимает привилегированного положения не только в только что изложенном объяснении теней, но и в полном математическом объяснении, даваемом квантовой теорией. Субъективно я могу считать, что выделяюсь среди копий своей «реальностью», поскольку я могу непосредственно воспринимать себя, а не других, но я должен смириться с тем, что все остальные копии чувствуют то же самое по отношению к себе.

Многие из этих Дэвидов Дойчей пишут эти же самые слова в это мгновение. У некоторых это получается лучше. А некоторые пошли выпить чашку чая.

iknigi.net

дитя лича :: Структура реальности

Читаю книжку Дойча "Структура реальности".

В главе второй автор написал об интерференции света, плавно переходя к наличию параллельных миров:

Давайте подойдем к рассмотрению этого вопроса критически. Мы обнаружили, что когда один фотон проходит через этот аппарат, он проходит через одну щель, затем что-то воздействует на него, заставляя отклониться от своей траектории,

и это воздействие зависит от того, какие еще щели открыты;

воздействующие объекты прошли через другие щели;

воздействующие объекты ведут себя так же, как фотоны ...,

... но они не видимы.

С этого момента я буду называть воздействующие объекты «фотонами». Именно фотонами они и являются, хотя на данный момент представляется, что существует два вида фотонов, один из которых я временно назову реальными фотонами, а другой теневыми фотонами. Первые мы можем увидеть или обнаружить с помощью приборов, тогда как вторые — неосязаемы (невидимы): их можно обнаружить только косвенно через их воздействие на видимые фотоны. Далее мы увидим, что между реальными и теневыми фотонами не существует особой разницы: каждый фотон осязаем в одной Вселенной и не осязаем во всех параллельных Вселенных...

...По тем же причинам мы могли бы назвать совокупность теневых частиц параллельной Вселенной, ибо теневые частицы оказываются под воздействием реальных частиц только через явление интерференции. Но мы можем сделать еще лучше. Оказывается, что теневые частицы разделяются между собой точно так же, как отделяется от них вселенная реальных частиц. Другими словами, они образуют не одну однородную параллельную вселенную, гораздо большую чем реальная, а огромное количество параллельных вселенных, каждая из которых по составу похожа на реальную и подчиняется тем же законам физики, но отличается от других расположением частиц.

http://www.e-reading.co.uk/chapter.php/20105/7/Doiich_-_Struktura_real%27nosti.html

Не нравится мне чивой-то грубое, вульгарное, примитивное и материалистическое уподобление фотонов шарикам от пинг-понга. А как же превращение массы в энергию и обратно, условный характер размеров элементарных частиц и так называемая квантовая телепортация? Разве не показывают они, что нельзя микромир тупо уподоблять макромиру?

И вот что пришло мне в голову. Если теневые и световые фотоны не могут одновременно находиться в одном и том же месте, то куда деваются теневые фотоны, когда свет горит ярко и все щели заполнены световыми фотонами, а?

Затем смотрите. Если теневые и световые фотоны не могут одновременно находиться в одном и том же месте, значит их количество ограничено. Ограничено и количество параллельных миров, его даже в принципе можно рассчитать.

При каждой световой дифракции в каждом из миров фотоны попадают в разные места, а, значит, миры начинают отличаться друг от друга (см.эффект бабочки).

А раз миры начинают отличаться, то количество фонариков, находящихся в одном и том же месте, будет постепенно уменьшаться. (Я вообще не понимаю, как при таком раскладе еще сохранилось такое солидное их количество, совпадающее пространственно - ведь со времени возникновения вселенной дифракция света происходила стопитьсот млрд раз).

Потом, ведь весьма возможно, что часть фонариков будет располагаться таким образом, что только половина их луча будет попадать в эти щели, а значит, дифракционная картина будет совсем другая - но мы этого никогда не наблюдаем. Почему?

Потом - возможно выдумать эксперимент, доказывающий существование параллельных вселенных. Для этого пускаем единичный фотон через эту решетку на пластину с нарисованной на ней маленькой картой местности:) Одновременно то же делают наши двойники в параллельных мирах. Натурально, их фотоны попадают в другое место на карте. Затем мы едем в это место и повторяем эксперимент. После определенного количества повторений дифракционная картина должна измениться! (Хотя я готова поспорить на что угодно, что не изменится).

Конечно, параллельные вселенные удобны тем, что ими в принципе можно объяснить что угодно. При певращении массы в энергию, например, можно сказать, что лишние частицы просто переместились из параллельных вселенных. Или движение. Никакого движения нет, а есть лишь перемещение сознания по вселенным в разных состояниях.

Но вот способна ли эта штука хоть что-то предсказать?

eovin1.livejournal.com


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики