Тверже алмаза: Топ-10 самых твёрдых материалов на Земле — FEA.RU | CompMechLab

Ученые приблизились к промышленному синтезу материала тверже алмаза

Исследователи из Технологического института сверхтвердых и новых углеродных материалов в Троицке, МФТИ, МИСиС и МГУ разработали новый метод синтеза ультратвердого материала, который превосходит алмаз по твердости. Детальное описание способа, позволяющего синтезировать ультратвердый фуллерит — полимер на основе фуллеренов, молекул в виде сфер из атомов углерода, — приводится в журнале Carbon.

В своей работе ученые отмечают, что алмаз уже давно не является самым твердым материалом. Натуральные алмазы имеют твердость около 150 гигапаскалей — сейчас первое место в перечне самых твердых материалов занимает ультратвердый фуллерит с показателем твердости от 150 до 300 ГПа.

Ультратвердыми материалами называют все, что тверже алмаза; материалы мягче алмаза, но тверже нитрида бора обозначают как сверхтвердые: нитрид бора с кубической решеткой почти втрое тверже хорошо известного корунда.

Фуллериты — это материалы, состоящие из фуллеренов. Фуллеренами, в свою очередь, называют молекулы углерода в виде сфер, образованных 60 атомами; фуллерен синтезирован более двадцати лет назад, и за его открытие вручена Нобелевская премия. Углеродные сферы в составе фуллерита могут быть по-разному упакованы, и твердость материала очень сильно зависит от того, как именно они связаны между собой. В открытом сотрудниками Технологического института сверхтвердых и новых углеродных материалов (ФГБНУ ТИСНУМ) ультратвердом фуллерите молекулы С60 связаны друг с другом ковалентными связями во всех направлениях — этот материал ученые называют трехмерным полимером.

Однако методов, позволяющих получать это перспективное вещество в промышленных масштабах, пока не существует. С практической точки зрения сверхтвердая форма углерода интересна в первую очередь специалистам по обработке металлов и других материалов: чем тверже режущий инструмент, тем дольше он служит и тем качественнее можно обрабатывать детали.

(схематическое изображение молекулы фуллерена, C60)

Невозможность синтеза фуллерита в больших количествах обусловлена очень высоким давлением, которое необходимо создать для начала реакции. Образование трехмерного полимера начинается при давлениях от 13 ГПа или 130 тысяч атмосфер — а создать такое давление в большом объеме современная техника не позволяет.

(Алмазные наковальни, деформированные при синтезе ультратвердого фуллерита, обратите внимание на вмятину в центре)

Ученые показали, что добавление к исходной смеси реагентов сероугерода, CS2, играет роль катализатора в синтезе фуллерита. Это вещество синтезируется в промышленных масштабах, активно используется на различных предприятиях, а технологии работы с ним хорошо отработаны. Сероуглерод, как показали эксперименты,  конечный продукт, но выступает в роли катализатора. а счет него образование ценного сверхтвердого материала становится возможным при меньшем давлении — 8 ГПа, причем при комнатной температуре, в то время как предыдущие попытки синтезировать фуллерит при 13 ГПа требовали нагрева до 1100К (свыше 820 градусов Цельсия).

«Открытие, описанное в статье (каталитический синтез ультратвердого фуллерита) создает новое направление в области материалов, поскольку существенно снижает давление синтеза и позволяет промышленно производить этот материал и его производные», — пояснил ведущий автор исследования, заведующий лабораторией функциональных наноматериалов в ФГБНУ ТИСНУМ Михаил Юрьевич Попов.

P.S. Подробнее ультратвердый фуллерит описан в следующих научных публикациях:

  1. Is C 60 fullerite harder than diamond? V.Blank, M.Popov, S.Buga, V.Davydov, V.N. Denisov, A.N. Ivlev, B.N. Mavrin, V.Agafonov, R.Ceolin, H.Szwarc, A.Rassat. Physics Letters A Vol.188 (1994) P 281-286.

  2. Structures and physical properties of superhard and ultrahard 3D polymerized fullerites created from solid C60 by high pressure high temperature treatment. V.D. Blank, S.G. Buga, N.R. Serebryanaya, G.A. Dubitsky, B. Mavrin, M.Yu. Popov, R.H. Bagramov, V.M. Prokhorov, S.A. Sulynov, B.A. Kulnitskiy and Ye.V.  Tatyanin. Carbon, V.36, P 665-670 (1998)

  3. Ultrahard and superhard phases of fullerite C60 : comparison with diamond on hardness and wear. V.Blank, M.Popov, G.Pivovarov, N.Lvova, K.Gogolinsky, V.Reshetov. Diamond and Related Materials. Vol. 7, No 2-5 (1998), P 427-431

P.P.S. Пресс-служба МФТИ благодарит исследователя за неоценимую помощь в подготовке материала. Если вы также работаете в МФТИ и недавно опубликовали интересную научную статью — свяжитесь с нами по почте [email protected].

Тверже алмаза: топ 5 самых твердых веществ в мире – Пипсик

Многие ошибочно полагают, что на Земле нет ничего тверже алмаза. Но есть соединения, по сравнению с которыми алмаз напоминает мягкое масло! Некоторые из них встречаются в природе, другие же могут быть синтезированы исключительно в лабораторных условиях. Итак, 5 самых твердых веществ в мире:

1. Фуллерит

Это вещество по праву считается самым твердым на Земле. Уникальность этого кристалла в том, что состоит он не из атомов, а из молекул. Удивительно, но фуллерит царапает алмаз точно так же, как металлический нож оставляет следы на пластиковой поверхности.

В природе фуллерит не встречается: он может быть синтезирован только искусственным путем. Получают его из фуллеренов под давлением в 90 тысяч атмосфер и при температуре около 300 градусов. Фуллерены представляют собой молекулярные «шары», состоящие из атомов углерода.

Если рассматривать их под мощным микроскопом, «шары» будут напоминать футбольные мячи, каждая «грань» которых составлена из шести молекул углерода. Под воздействие экстремальных условий эти «шары» соединяются друг с другом, образуя прочные, практически нерушимые химические связи. Интересно, что существуют особые катализаторы, благодаря которым реакция полимеризации может происходить даже при комнатной температуре.

Свойста фуллерита:

Во-первых, как уже было сказано, он практически в два раза тверже, чем алмаз. Во-вторых, он обладает исключительной устойчивостью к концентрированным кислотам и щелочам, практически не вступая в химические реакции даже с самыми агрессивными реагентами.

В-третьих, фуллерит устойчив к воздействию высоких температур. Своих свойств он не теряет вплоть до температуры 930 градусов Цельсия! Наконец, между молекулами углерода в его атомарной решетке имеются пустоты, которые могут быть заполнены любыми другими молекулами, в том числе и металлами, что позволяет создать на основе фуллерита материалы с любыми заданными свойствами.

2. Лонсдейлит

Этот минерал очень похож на алмаз по своей молекулярной структуре. Его даже называют гексональным алмазом. Лонсдейлит также является одной из модификаций углерода.

Однако если это вещество загрязнено различными примесями, оно не может похвастаться особой твердостью. Но в очищенном виде он гораздо тверже, чем алмаз, и с легкостью может оставить на нем царапины. Чистый лонсдейлит на 58% прочнее алмаза, а при приложении к нему нагрузки прочность его лишь увеличивается. Кстати, механизм этого процесса для ученых все еще остается загадкой.

Очень интересна история его открытия. Впервые следы вещества удалось обнаружить на дне воронок, оставшихся после падения метеоритов. Метеориты эти, по-видимому, состояли преимущественно из графита. Из-за высокой температуры графит превратился в лонсдейлит. Минерал был найден в России на месте падения Тунгусского метеорита, а также в Америке в кратере Дьявола. Благодаря этому Лонсдейлит еще называют космическим алмазом.

Свое название минерал получил в честь ученого-минералога из Британии Кэтлин Лонсдейл. Идею дать ему именно такое название предложил другой минералог по имени Клиффорд Фрондель. Он пояснил эту мысль тем, что новая форма алмаза в природе столь же редка, как и женщина-ученый. Конечно, в наши дни это не столь актуально. В 1960-е же годы ситуация в науке была такой, что женщинам было сложно добиться больших научных высот.

3. Вюртцитный нитрид бора

Кристаллическая решетка этого вещества представляет собой особую форму, которую называют вюртцитной. Именно благодаря этому вещество является столь твердым. Если прикладывать к кристаллу нагрузку, атомы в кристаллической решетке будут особым образом перераспределяться, из-за чего вещество станет еще более твердым.

То есть чем больше нагрузка, тем тверже делается нитрид бора! Это свойство роднит его с лонсдейлитом — еще одним «конкурентом» алмаза, который образуется на дне воронок, оставленных графитовыми метеоритами. До сих пор не удалось точно установить, по каким причинам твердость минерала меняется при воздействии нагрузок.

К сожалению, вопрос остается открытым, так как экспериментировать с этим веществом довольно сложно, поскольку его нелегко синтезировать в лабораторных условиях.

4. Эльбор

Эльбор иначе называют кингсонгит и боразон. Материал этот практически такой же твердый, как и алмаз. Благодаря этому он широко используется в обработке различных твердых сплавов. Эльбор является природной модификацией нитрида бора.

Эльбор — единственное соединение бора, которой образуется в недрах нашей планеты. Остальные минералы, в состав которых входит бор, зарождаются около поверхности Земли.

Эльбор удалось обнаружить в части земной коры, которая в ходе эволюции планеты словно бы «нырнула» под соседнюю литосферную плиту. На глубине более трех сотен километров при температуре около 1200 градусов произошли химические превращения, в результате которых и появился этот сверхтвердый минерал. Случилось это примерно 180 миллионов лет назад.

5. Нитрил бора

Это вещество появилось сравнительно недавно: оно было синтезировано в лабораторных условиях в 1957 году, и оказалось значительно тверже алмаза. Одновременно оно превосходит его и по ряду других свойств. Например, при воздействии сверхвысоких температур вещество не растворяется в металлах, благодаря чему может использоваться для обработки стали. Слой нитрила углерода-бора наносится на инструмент в качестве режущей кромки для обработки всевозможных деталей, использующихся в самолетах и космических кораблях.

Природа удивительна и нас ждет еще множество невероятных открытий. Алмаз — далеко не самое твердое в мире вещество. Правда, поспорить с ним по красоте и привлекательности другим минералам непросто. Хотя нельзя исключать, что рано или поздно в продаже появятся обручальные кольца с фуллеритом или лонсдейлитом.

На Земле есть 6 «самых прочных материалов», которые тверже алмазов

Max Pixel

Углерод — один из самых удивительных элементов во всей природе, химические и физические свойства которого не похожи ни на один другой элемент. Имея всего шесть протонов в ядре, это самый легкий распространенный элемент, способный образовывать множество сложных связей. Все известные формы жизни основаны на углероде, поскольку его атомные свойства позволяют ему соединяться с четырьмя другими атомами одновременно. Возможная геометрия этих связей также позволяет углероду самостоятельно собираться, особенно при высоких давлениях, в стабильную кристаллическую решетку. Если условия правильные, атомы углерода могут образовать твердую сверхтвердую структуру, известную как алмаз.

Хотя алмазы широко известны как самые твердые материалы в мире, на самом деле существует шесть более твердых материалов. Алмазы по-прежнему являются одним из самых твердых природных и распространенных материалов на Земле, но все эти шесть материалов превосходят его.

Карлес Лалуеза-Фокс, Инги Агнарссон, Матьяж Кантнер, Тодд А. Блэкледж (2010)

Почетное упоминание : есть три земных материала, которые не так тверды, как алмаз, но все же представляют значительный интерес для их сила в различных модах. С появлением нанотехнологий — наряду с развитием понимания современных материалов в наномасштабе — мы теперь признаем, что существует множество различных показателей для оценки физически интересных и экстремальных материалов.

С биологической точки зрения шелк паука известен как самый прочный. Обладая более высоким отношением прочности к весу, чем у большинства обычных материалов, таких как алюминий или сталь, он также примечателен своей тонкостью и липкостью. Из всех пауков в мире пауки Дарвина самые прочные: в десять раз прочнее кевлара. Он настолько тонкий и легкий, что примерно из фунта (454 грамма) шелка коры дарвиновского паука можно составить нить, достаточно длинную, чтобы очертить окружность всей планеты.

Scott Horvath, USGS

Карбид кремния, встречающийся в природе в форме муассанита, лишь немного уступает по твердости алмазу. (Это все еще тверже, чем любой паутинный шелк.) Химическая смесь кремния и углерода, которые занимают одно и то же семейство в периодической таблице, зерна карбида кремния массово производятся с 189 года.3. Они могут быть соединены вместе с помощью процесса высокого давления, но низкой температуры, известного как спекание, для создания чрезвычайно твердых керамических материалов.

Эти материалы не только полезны в самых разных областях применения, в которых используется твердость, таких как автомобильные тормоза и сцепления, пластины в пуленепробиваемых жилетах и ​​даже боевая броня, подходящая для танков, но также обладают невероятно полезными полупроводниковыми свойствами для использования в электроника.

Oak Ridge National Laboratories / flickr

Крошечные кварцевые шарики диаметром от 50 нанометров до всего 2 нанометров были впервые созданы около 20 лет назад в Национальной лаборатории Сандия Министерства энергетики. Что примечательно в этих наносферах, так это то, что они полые, они самособираются в сферы и могут даже вкладываться друг в друга, оставаясь при этом самым жестким материалом, известным человечеству, лишь немного менее твердым, чем алмазы.

Самосборка — невероятно мощный природный инструмент, но биологические материалы слабее синтетических. Эти самособирающиеся наночастицы могут быть использованы для создания нестандартных материалов, от более качественных очистителей воды до более эффективных солнечных элементов, от более быстрых катализаторов до электроники следующего поколения. Тем не менее, технология мечты этих самособирающихся наносфер — это печатные бронежилеты, изготовленные по индивидуальному заказу в соответствии со спецификациями пользователя.

Getty

Алмазы, конечно, тверже всех этих материалов, и по-прежнему занимают седьмое место в списке самых твердых материалов, найденных или созданных на Земле. Несмотря на то, что они были превзойдены как другими природными (но редкими) материалами, так и синтетическими, созданными человеком, они все еще держат один важный рекорд.

Алмазы остаются самым устойчивым к царапинам материалом, известным человечеству. Такие металлы, как титан, гораздо менее устойчивы к царапинам, и даже чрезвычайно твердая керамика или карбид вольфрама не могут конкурировать с алмазами в отношении твердости или устойчивости к царапинам. Другие кристаллы, известные своей чрезвычайной твердостью, такие как рубины или сапфиры, по-прежнему уступают алмазам.

Но шесть материалов превзошли по твердости даже хваленый алмаз.

Benjah-bmm27 / общественное достояние

6.) Вюрцит нитрид бора . Вместо углерода вы можете сделать кристалл из ряда других атомов или соединений, и одним из них является нитрид бора (BN), где 5-й и 7-й элементы в периодической таблице объединяются, образуя множество возможностей. Он может быть аморфным (некристаллическим), гексагональным (похожим на графит), кубическим (похожим на алмаз, но немного слабее) и формой вюрцита.

Последняя из этих форм чрезвычайно редкая, но и чрезвычайно сложная. Образовавшийся во время вулканических извержений, он был обнаружен только в незначительных количествах, а это означает, что мы никогда не проверяли его свойства твердости экспериментально. Однако он образует кристаллическую решетку другого типа — тетраэдрическую вместо гранецентрированной кубической — которая, согласно последним моделированиям, на 18% тверже алмаза.

Hiroaki Ohfuji et al., Nature (2015)

5.) Lonsdaleite . Представьте, что у вас есть метеор, полный углерода и, следовательно, содержащий графит, который проносится через нашу атмосферу и сталкивается с планетой Земля. Хотя вы можете представить себе падающий метеор как невероятно горячее тело, горячими становятся только его внешние слои; внутренности остаются прохладными на протяжении большей части (или даже потенциально всего) их путешествия к Земле.

Однако при столкновении с поверхностью Земли внутреннее давление становится больше, чем любой другой естественный процесс на поверхности нашей планеты, и заставляет графит сжиматься в кристаллическую структуру. Однако он обладает не кубической решеткой алмаза, а гексагональной решеткой, которая на самом деле может обеспечить твердость на 58% выше, чем у алмаза. В то время как реальные образцы лонсдейлита содержат достаточное количество примесей, чтобы сделать их мягче алмазов, графитовый метеорит без примесей, упавший на Землю, несомненно, произвел бы материал более твердый, чем любой земной алмаз.

Justsail / Wikimedia Commons

4.) Dyneema . С этого момента мы покидаем царство встречающихся в природе веществ. Dyneema, термопластичный полиэтиленовый полимер, отличается необычайно высокой молекулярной массой. Большинство известных нам молекул представляют собой цепочки атомов с несколькими тысячами атомных единиц массы (протонов и/или нейтронов). Но UHMWPE (полиэтилен сверхвысокой молекулярной массы) имеет чрезвычайно длинные цепи с молекулярной массой в миллионы единиц атомной массы.

Благодаря очень длинным цепям их полимеров межмолекулярные взаимодействия существенно усиливаются, создавая очень прочный материал. Фактически, он настолько прочен, что обладает самой высокой ударной вязкостью среди всех известных термопластов. Его называют самым прочным волокном в мире, и оно превосходит все швартовные и буксирные канаты. Несмотря на то, что он легче воды, он может останавливать пули и в 15 раз прочнее сопоставимого количества стали.

Роберт Ритчи и Мариос Деметриу

3.) Стекло из микросплава палладия . Важно признать, что есть два важных свойства, которыми обладают все физические материалы: прочность, то есть, какое усилие он может выдержать, прежде чем деформируется, и ударная вязкость, то есть сколько энергии требуется, чтобы его сломать или расколоть. Большинство керамических изделий прочные, но не жесткие, они разбиваются при захвате тисками или даже при падении с небольшой высоты. Эластичные материалы, такие как резина, могут удерживать много энергии, но легко деформируются и совсем не прочны.

Большинство стекловидных материалов хрупкие: прочные, но не особо прочные. Даже армированное стекло, такое как Pyrex или Gorilla Glass, не является особенно прочным по шкале материалов. Но в 2011 году исследователи разработали новое стекло из микросплава, состоящее из пяти элементов (фосфор, кремний, германий, серебро и палладий), где палладий обеспечивает путь для формирования полос сдвига, позволяя стеклу пластически деформироваться, а не трескаться. Он побеждает все типы стали, а также все, что ниже в этом списке, благодаря сочетанию прочности и ударной вязкости. Это самый твердый материал, не содержащий углерода.

НАНОЛАБ, ИНК.

2.) Клейкая бумага . С конца 20-го века хорошо известно, что существует форма углерода, которая даже тверже алмаза: углеродные нанотрубки. Связывая углерод вместе в шестиугольную форму, он может удерживать жесткую цилиндрическую структуру более стабильно, чем любая другая структура, известная человечеству. Если вы возьмете совокупность углеродных нанотрубок и создадите из них макроскопический лист, вы сможете создать из них тонкий лист: липкую бумагу.

Каждая отдельная нанотрубка имеет диаметр всего от 2 до 4 нанометров, но каждая из них невероятно прочная и жесткая. Он всего на 10% легче стали, но в сотни раз прочнее. Он огнеупорный, чрезвычайно теплопроводный, обладает потрясающими свойствами электромагнитного экранирования и может найти применение в материаловедении, электронике, военных и даже биологических областях. Но липкая бумага не может состоять из нанотрубок на 100%, что, возможно, не позволяет ей занять первое место в этом списке.

AlexanderAlUS/CORE-Материалы flickr

1.) Графен . Наконец: гексагональная углеродная решетка толщиной всего в один атом. Вот что такое лист графена, возможно, самый революционный материал, который будет разработан и использован в 21 веке. Это основной структурный элемент самих углеродных нанотрубок, и их применение постоянно растет. Ожидается, что в настоящее время многомиллионная индустрия графена превратится в многомиллиардную индустрию всего за несколько десятилетий.

По отношению к своей толщине это самый прочный из известных материалов, он является исключительным проводником как тепла, так и электричества и почти на 100% прозрачен для света. Нобелевская премия по физике 2010 г. была присуждена Андрею Гейму и Константину Новоселову за новаторские эксперименты с графеном, а число коммерческих приложений только растет. На сегодняшний день графен является самым тонким из известных материалов, а всего лишь шестилетний перерыв между работой Гейма и Новоселова и их Нобелевской премией — один из самых коротких в истории физики.

Workbit / Wikimedia Commons

Стремление сделать материалы тверже, прочнее, устойчивее к царапинам, легче, прочнее и т. д., вероятно, никогда не закончится. Если человечество сможет раздвинуть границы доступных нам материалов дальше, чем когда-либо прежде, области применения того, что становится возможным, будет только расширяться. Поколения назад идея микроэлектроники, транзисторов или способности манипулировать отдельными атомами, несомненно, была исключительной областью научной фантастики. Сегодня они настолько распространены, что мы воспринимаем их как должное.

По мере того, как мы с полной силой мчимся в эпоху нанотехнологий, материалы, подобные описанным здесь, становятся все более важными и вездесущими для качества нашей жизни. Замечательно жить в цивилизации, где алмазы больше не являются самым твердым из известных материалов; научные достижения, которые мы делаем, приносят пользу обществу в целом. По мере развития 21-го века мы все увидим, что вдруг станет возможным благодаря этим новым материалам.

Ученые обнаружили материал тверже алмаза

Кольцо с бриллиантом. Ученые подсчитали, что вюрцит, нитрид бора и лонсдейлит (гексагональный алмаз) обладают большей прочностью на вдавливание, чем алмаз. Источник: английская Википедия.

(PhysOrg.com) — В настоящее время алмаз считается самым твердым из известных материалов в мире. Но, учитывая большие давления сжатия под инденторами, ученые подсчитали, что материал, называемый вюртцит-нитрид бора (w-BN), обладает большей прочностью на вдавливание, чем алмаз. Ученые также подсчитали, что другой материал, лонсдейлит (также называемый гексагональным алмазом, так как он сделан из углерода и похож на алмаз), даже прочнее w-BN и на 58 процентов прочнее алмаза, установив новый рекорд.

Этот анализ знаменует собой первый случай, когда материал превосходит алмаз по прочности при тех же условиях нагрузки, объясняют авторы исследования из Шанхайского университета Цзяо Тонг и Университета Невады в Лас-Вегасе. Исследование опубликовано в недавнем выпуске Physical Review Letters .

«Новый вывод из наших результатов заключается в том, что большие нормальные сжимающие давления под инденторами могут преобразовывать определенные материалы (такие как w-BN и лонсдейлит) в новые сверхтвердые структуры, которые тверже алмаза», — соавтор Чанфэн Чен из Университета Невады, Лас-Вегас, сказал PhysOrg.com . «Это новый механизм, который можно использовать для разработки новых сверхтвердых материалов».


Присоединяйтесь к PhysOrg.com на Facebook


Ученые объясняют, что превосходная прочность w-BN и лонсдейлита обусловлена ​​структурной реакцией материалов на сжатие. Нормальное сжимающее давление под инденторами заставляет материалы претерпевать структурно-фазовое превращение в более прочные структуры, сохраняя объем за счет переворачивания их атомных связей. Ученые объясняют, что w-BN и лонсдейлит имеют тонкие различия в расположении их связей по сравнению с алмазом, что отвечает за их уникальную структурную реакцию.

При больших давлениях сжатия w-BN увеличивает свою прочность на 78 процентов по сравнению с его прочностью до переворачивания связи. Ученые подсчитали, что w-BN достигает прочности на вдавливание 114 ГПа (миллиардов паскалей), что намного превышает 97 ГПа у алмаза при тех же условиях вдавливания. В случае с лонсдейлитом тот же механизм сжатия вызвал переворачивание связей, в результате чего прочность на вдавливание составила 152 ГПа, что на 58 % выше, чем у алмаза.

«Лонсдейлит даже прочнее, чем w-BN, потому что лонсдейлит состоит из атомов углерода, а w-BN состоит из атомов бора и азота», — объяснил Чен. «Связи углерод-углерод в лонсдейлите прочнее, чем связи бор-азот в w-BN. Вот почему алмаз (с кубической структурой) прочнее кубического нитрида бора (c-BN)».

До недавнего времени нормальные сжимающие давления под инденторами не включались в расчеты идеальной прочности кристаллов на сдвиг из первых принципов, но последние разработки позволили исследователям учесть их влияние, что привело к удивительным открытиям, подобным показанному здесь. Тем не менее, эксперименты с w-BN и лонсдейлитом будут сложными, поскольку оба материала трудно синтезировать в больших количествах. Однако в другом недавнем исследовании был использован многообещающий подход к производству нанокомпозитов w-BN и c-BN, который также может обеспечить способ синтеза нанокомпозитов, содержащих лонсдейлит и алмаз.

Кроме того, показывая лежащий в основе атомистический механизм, который может упрочнять некоторые материалы, эта работа может предложить новые подходы к разработке сверхтвердых материалов. Как объяснил Чен, сверхтвердые материалы, обладающие другими превосходными свойствами, весьма желательны для применения во многих областях науки и техники.

«Высокая твердость — это только одна важная характеристика сверхтвердых материалов», — сказал Чен. «Термическая стабильность является еще одним ключевым фактором, поскольку многие сверхтвердые материалы должны выдерживать экстремально высокие температуры в качестве инструментов для резки и сверления, а также в качестве покрытий, устойчивых к износу, усталости и коррозии, в самых разных областях, от микро- и наноэлектроники до космических технологий. Для всех сверхтвердых материалов на основе углерода, включая алмаз, их атомы углерода будут реагировать с атомами кислорода при высоких температурах (около 600°C) и станут нестабильными. Поэтому разработка новых, термически более стабильных сверхтвердых материалов имеет решающее значение для высокотемпературных применений. Кроме того, поскольку наиболее распространенные сверхтвердые материалы, такие как алмаз и кубический BN, являются полупроводниками, крайне желательно разработать сверхтвердые материалы, которые являются проводниками или сверхпроводниками. Кроме того, сверхтвердые магнитные материалы являются ключевыми компонентами различных записывающих устройств».

Дополнительная информация: Пан, Цзычэн; Сун, Хонг; Чжан, И; и Чен, Чанфэн. «Тверже алмаза: превосходная прочность на вдавливание вюрцита BN и лонсдейлита». Письма о физическом обзоре 102, 055503 (2009).

Copyright 2009 PhysOrg.com.

Все права защищены. Этот материал нельзя публиковать, транслировать, переписывать или распространять полностью или частично без письменного разрешения PhysOrg.