Внутренняя память компьютера, ее свойства и характеристики. Память компьютера делится на


Память компьютера виды памяти | LiveЛидер

Память компьютера — специальное устройство для записи и хранения различного рода данных. Выделяют два типа памяти в компьютерном устройстве: оперативная и постоянная (внутренняя и внешняя).

Оперативная память — быстрый тип памяти, позволяющий с высокой скоростью записывать и считывать данные, но при этом информация хранится в ней только во включенном состоянии компьютерного устройства, то есть когда на нее подается электричество. Именно этот нюанс делает оперативную память непригодной для долгосрочного хранения информации. Выключите компьютер — и вся информация из оперативной памяти будет стерта.

Предназначение оперативной памяти — это запись-чтение информации с высокой скоростью установленными программами и операционной системой. Загрузка компьютера при включении представляет собой всего лишь загрузку необходимых для работы программ в оперативную память. Оперативная память бывает нескольких типов: SDRAM, DDR, DDR2, DDR3. Каждый последующий тип памяти представляет собой улучшение предыдущего и позволяет новой памяти работать с большей скоростью. В данный момент в современных компьютерах используется оперативная память типа DDR3. Выбор оперативной памяти зависит от разъемов на материнской плате.

Постоянная память — тип памяти, позволяющий хранить информацию и при выключенном компьютере. Наиболее распространенный вариант постоянной памяти — жесткие диски HDD. Они представляют собой один или несколько магнитных дисков, вращающихся с огромной скоростью (от 5 до 12 тысяч оборотов в минуту), и головок, предназначенных для считывания и записи информации. HDD являются надежными носителями информации, позволяют записывать и считывать информацию огромное количество раз. Единственный их минус — они очень восприимчивы к ударам, падениям и прочим механическим воздействиям, особенно в момент работы.

Все большее распространение набирают твердотельные накопители SSD. Данный вид постоянной памяти развился из USB-флеш-накопителей. Основные преимущества и недостатки SSD-накопителей:

  • имеют в разы более высокую скорость чтения и записи, чем HDD;
  • не восприимчивы к механическим воздействиям;
  • стоимость SSD-накопителей превышает плату за HDD в несколько раз;
  • имеют конечное количество циклов чтения-записи.

CD и DVD-диски также относятся к постоянной памяти компьютера, являясь относительно недорогим вариантом хранения небольших объемов информации. Опасность потери информации на этих носителях состоит в их механическом повреждении: царапины, разломы, термическое воздействие.

Каждый вид памяти компьютерного устройства имеет свои преимущества и недостатки, но есть некоторые, без которых компьютер не будет работать. CD и DVD-диски, USB-флеш-накопитель, съемный жесткий диск являются необязательными комплектующими в системном блоке, а без оперативной памяти и локального жесткого диска устройство не будет функционировать.

Компьютерная память обеспечивает поддержку одной из наиважнейших функций современного компьютера, — способность длительного хранения информации

Компьютерная память является одним из наиболее главных вопросов устройства компьютера, так как она обеспечивает поддержку одной из наиважнейшей функций современного компьютера, — способность длительного хранения информации.

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память.

Все персональные компьютеры используют три вида памяти: оперативную, постоянную и внешнюю (различные накопители).

Внутренняя память компьютера — это место хранения информации, с которой он работает. Внешняя память (различные накопители) предназначена для долговременного хранения информации

Наиболее знакомы средства машинного хранения данных, используемые в персональных компьютерах: — это модули оперативной памяти, жесткие диски (винчестеры), дискеты (гибкие магнитные диски), CD или DVD диски, а также устройства флэш-памяти.

Компьютерная память бывает двух видов: внутренняя и внешняя.Внутренней памяти: оперативное запоминающее устройство с произвольной выборкой (ОЗУ) и постоянное запоминающее устройство (ПЗУ).Наиболее существенная часть внутренней памяти называется ОЗУ — оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач.Оперативная память. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память. Однако содержащиеся в ней данные сохраняются только пока компьютер включен.

Постоянное запоминающее устройство (ПЗУ), в котором в частности хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера.

Внешняя память обычно располагается вне центральной части компьютера

К внешней памяти относятся различные магнитные носители (ленты, диски), оптические диски. Внешняя память дешевле внутренней, но ее недостаток в том, что она работает медленнее устройств внутренней памяти.

Существуют диски CD-ROM — диски с однократной записью, стереть или перезаписать их невозможно.

Позже были изобретены перезаписываемые лазерные диски — CD-RW.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние несколько жаргонно пользователи часто именуют винчестерами), а также оптические дисководы (устройства для работы с CD ROM).

Виды памяти персонального компьютера

Кэш-память. Основное назначение кэш-памяти в компьютере — служить местом временного хранения обрабатываемых в текущий момент времени кодов программ и данных. То есть ее назначение служить буфером между различными устройствами для хранения и обработки информации

ВIOS (постоянная память). В компьютере имеется также и постоянная память, в которую данные занесены при изготовлении. Как правило, эти данные не могут быть изменены, выполняемые на компьютере программы могут только их считывать.

В компьютере в постоянной памяти хранятся программы для проверки оборудования компьютера, инициирования загрузки ОС и выполнения базовых функций по обслуживанию устройств компьютера. Часто содержимое постоянной памяти называется ВIOS. В ней содержится программа настройки конфигурации компьютера (SЕТИР),она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дискет и обслуживанием ввода-вывода.

CMOS (полупостоянная память).

небольшой участок памяти для хранения параметров конфигурации компьютера. Его часто называют CMOS -памятью, поскольку эта память обычно выполняется по технологии, обладающей низким энергопотреблением.

Видеопамять. 

видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора.

и постоянная память (ПЗУ). 

Память компьютера делится на внешнюю (основную): гибкий и жесткий диски, CDDVD-ROM, CD DVD-RW,CD DVD-R и внутреннюю.

live-leader.ru

Внутренняя память компьютера

Рассмотрим память компьютера, которая по отношению к процессору является внутренней. Внутренняя память компьютера - это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания. Такая память в свою очередь также различается по типам:

Оперативная память или ОЗУ

Оперативная память (RAM - Random Access Memory) - это массив кристаллических ячеек, способных хранить данные. Иными словами, в ОЗУ хранится информация, с которой ведется работа в данный момент времени.

В ячейку можно записать только 0 или 1, т.е. 1 бит информации. Такая ячейка так и называется - «бит». Это наименьшая частица памяти компьютера и в связи с этим память имеет битовую структуру, которая определяет такое свойство оперативной памяти, как дискретность .

Оперативную память в компьютере размещают на стандар­тных панельках, называемых модулями. Модули вставляются в соответс­твующие разъемы на материнской плате. Такая конструкция облегчает процесс замены или наращивания памяти. Количество модулей зависит от нужного вам объема ОЗУ. Важнейшей характеристикой модулей оперативной памяти является быстродействие, которое зависит от максимально возможной частоты операций записи или считывания информации из ячеек памяти. Современные модули памяти обеспечивают частоту до 800 МГц, а их информационная емкость достигает 2 Гб. Hynix разработала модули памяти DDR2-800 объемом в 2 Гб

Рис.1 Модуль памяти

Мы знаем, что ОЗУ энергозависима, поэтому в целях сохранения, хранимой в ней информации необходимо подзаряжать ячейки этой памяти, этот процесс называется регенерация ОЗУ. Иными словами под регенерацией понимается восстановление заряда ячеек.

Различают динамическую память (DRAM) и статическую память (SRAM).

Память типа DRAM

DRAM (Dynamic Random Access Memory, динамическая оперативная память с произвольным доступом) - тип памяти, содержимое которой может сохраняться только в том случае, если оно будет обновляться через короткие интервалы времени. Динамическому ОЗУ нужна регенерация. DRAM применяется для производства модулей оперативной памяти.

Основное преимущество этого типа памяти состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большей емкости. Ячейки памяти в микросхеме DRAM - это крошечные конденсаторы, которые удерживают заряды.

Память типа sram

SRAM (Static RAM, статическая память) – после записи данных в ячейки статической памяти они могут сохранять свое значение сколько угодно (в отличие от динамической памяти). SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры. Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Все это определило использование ее в качестве буферной кэш-памяти.

Подведём итоги сравнения оперативной памяти:

Память DRAM:

Преимущества:

  • малое число элементов на одну ячейку, откуда высокая плотность упаковки, большой объем памяти на одном кристалле;

Недостатки:

  • необходимость периодического перезаряда элементов памяти, а это: уменьшает быстродействие, усложняет схемы обслуживания памяти;

Память SRAM:

Преимущества:

Недостатки:

  • в связи с дороговизной память типа SRAM используется, в основном только как КЭШ L1 и L21

  • маленькая плотность упаковки

Постоянная память или ПЗУ

Первую свою команду процессор находит в памяти, которая в отличие от магнитных и оптических дисков является внутренней и, в отличие от ОЗУ, энергонезависимой, т.е. хранит информацию постоянно, даже после выключения компьютера.

Такая память действительно существует и называется ПЗУ (ROM - Read Only Memory, память только для чтения) - постоянное запоминающее устройство. Микросхема ПЗУ устанавливается так, что ее память занимает нужные адреса. Поэтому процессор, когда начинает свою работу, в постоянную память, заготовленную для него заранее. Из ПЗУ можно только читать информацию.

В постоянной памяти хранятся программы, необходимые для запуска компьютера и «зашитые» в нее при изготовлении. Основное назначение этих программ состоит в том, чтобы проверить состав и работоспособной компьютерной системы сразу после включения.

Итак, в ПЗУ хранится информации об устройствах компьютера, т.е. параметры и характеристики монитора, жесткого диска, мыши и т.д. для того, чтобы при включении компьютера, прежде чем начать работу, можно было убедиться, что все они работоспособны.

Необходима такая память, в которую можно было бы записывать информацию (в отличие от ПЗУ) и которая была бы энергонезависимой (отличие от ОЗУ). И такая память действительно существует и по технологии изготовления называется она CMOS.

CMOS-память

CMOS - это память с невысоким быстродействием и минимальным энергопотреблением от батарейки, расположенной на материнской плате. Заряда батарейки хватает на несколько лет. CMOS используется для хранения информации о составе оборудования компьютера, а также о режимах его работы. Наличие этого вида памяти позволяет отслеживать время и календарь, даже если компьютер выключен. Таким образом, программы записанные в ПЗУ, считывают информацию о составе оборудования компьютера из микросхемы CMOS, после чего выполняют тестирование устройств ПК.

Кэш-память

Cash (запас) обозначает быстродействующую буферную память между процессором и основной памятью. Кэш служит для частичной компенсации разницы в скорости процессора и основной памяти – туда попадают наиболее часто используемые данные. Когда процессор первый раз обращается к ячейке памяти, ее содержимое параллельно копируется в кэш, и в случае повторного обращения в скором времени может быть с гораздо большей скоростью выбрано из кэша [1, С.39-40].

Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды «ближе» к процессору, откуда их можно быстрее получить. Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой.

Новинки имеют кэш-память емкостью до 32 Мб

Видеопамять

Еще один вид памяти – это видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран. Он обычно выполняется в виде специальной платы, вставляемой в разъем системной шины компьютера, но на многих компьютерах он входит в состав системной (материнской) платы. Видеоконтроллер получает от микропроцессора компьютера команды по формированию изображения, конструирует это изображение в своей служебной памяти - видеопамяти, и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор-видеосигнал.

В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях видеоадаптера объем видеопамяти может быть увеличен до 512 Мбайт.

studfiles.net

Иерархическая структура памяти ПК (нарисуйте схему и объясните ее). На каике виды делится вся память компьютера?

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:

Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.

Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

Энергозависимой называется память, которая стирается при выключении компьютера.

Энергонезависимой называется память, которая не стирается при выключении компьютера.

К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

Выделяют следующие основные типы устройств памяти с произвольным доступом:

Накопители на жёстких магнитных дисках (винчестеры, НЖМД) - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен гигабайт до нескольких терабайт.

Накопители на гибких магнитных дисках (флоппи-дисководы, НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт.

Оптические диски (СD-ROM- Compact Disk Read Only Memory) - компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча.

Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют:

1. Накопители на магнитных лентах (НМЛ)– устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами – стримеры –имеют увеличенную скорость записи 4 - 5Мбайт в сек.

2. Перфокарты – карточки из плотной бумаги и перфоленты – катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются.

12)

Локальные шины

Попытки улучшить системные шины за счет создания шин MCA и EISA имели ограниченный успех и кардинальным образом не решали проблемы. Все шины что существовали имели общий неостаток - сравнительно низкую пропускную способность, поскольку они разрабатывались в расчете на медленные процессоры,.Очевидным выходом из создавшегося положения является следующий: осуществлять часть операций обмена данными, требующих высоких скоростей, не через шину ввода-вывода, а через шину процессора, примерно так же, как подключается внешний кэш. При этом шина работает с частотой, соответствующей тактовой частоте процессора. Передачей данных управляет не центральный процессор, а плата расширения (мост), который высвобождает микропроцессор для выполнения других работ. Локальная шина обслуживает наиболее быстрые устройства: память, дисплей, дисковые накопители при этом обслуживание сравнительно медленных устройств - мышь, модем, принтер и другое - производится системной шиной типа ISA (EISA).Такая конструкция получила название локальной шины (LocalBus).

 

stydopedia.ru

Память компьютера и ее характеристики

В процессе работы компьютера программы, исходные данные, а также промежуточные и окончательные результаты необходимо где-то хранить и иметь возможность обращаться к ним. Для этого в составе компьютера имеются различные запоминающие устройства, которые называются памятью.

Память— это совокупность устройств для хранения информации в компьютере.

В компьютере используются два вида памяти: основная память (внутренняя) и внешняя память. Основная память в свою очередь делится на оперативную, постоянную и кэш-память.

К внешней памятью компьютера от­носятся накопители на жестких и гибких магнитных дисках, лазер­ные компакт-диски и магнитные ленты.

 

 

Рис. Виды памяти ПК

 

Условно память можно представить состоящей из ячеек, в каж­дой из которых хранится определенная порция информации. Что­бы взять (прочитать) информацию из ячейки или поместить (запи­сать) ее туда, надо указать адрес ячейки. Каждая ячейка имеет свой уникальный адрес, означающий номер этой ячейки в памяти. Суще­ствуют две распространенные операции с памятью — считывание (чтение) информации из памяти и запись ее в память для хранения.

При считывании порции информации из памяти осуществляет­ся передача ее копии в АЛУ, где с ней производятся определенные действия: числа участвуют в вычислениях, слова используются при создании текста, из звуков создается мелодия и т. д. Оригинал счи­танной порции информации остается в той же ячейке памяти до тех пор, пока на ее место не будет записана другая информация.

При записи (сохранении) порции информации предыдущие дан­ные, хранящиеся на этом месте, стираются. Вновь записанная инфор­мация хранится до тех пор, пока на ее место не будет записана другая.

Операции чтения и записи можно сравнить с известными в быту процедурами воспроизведения и записи, выполняемыми с обычным кассетным магнитофоном. Когда вы прослушиваете музыку, то счи­тываете информацию, хранящуюся на ленте. При этом информация на ленте не исчезает. Но после записи новой песни ранее хранивша­яся на ленте информация будет затерта и утрачена навсегда.

Способ обращения к устройству памяти для чтения или записи ин­формации получил название доступа.

С этим понятием связан такой параметр памяти, как время дос­тупа, или быстродействие памяти.

Быстродействие памяти — это показатель времени, необходимый для чтения из памяти либо записи в нее минимальной порции информации.

Очевидно, что для числового выражения этого параметра ис­пользуются единицы измерения времени: миллисекунда, микросе­кунда, наносекунда.

Другой важной характеристикой памяти любого вида является ее объем, называемый емкостью.

Емкость — это показатель максимально возможного объема хранения информации. Очевидно, что для числового выражения этого параметра ис­пользуются единицы измерения объема информации, которые вам знакомы: байты, Кбайты, Мбайты и Гбайты.

 

8.2. Оперативное запоминающее устройство.

Основная функция оперативного запоминающего устройства - временное хранение информации. Доступ в это хранилище очень быстрый - «оперативный». ОЗУ разбито на отдельные ячейки, помещенную туда информацию можно считывать сколько угодно раз. Для изме­нения содержания ячейки туда просто засылается другая информа­ция, которая хранится там до следующего изменения или выклю­чения ПК, или сбоя энергопитания. Таким образом, ОЗУ - это энергозависимая память. Каждая ячейка ОЗУ имеет свой уникаль­ный адрес, и запись или считывание информации, содержащейся в ячейке, осуществляется именно по этому адресу. Для понимания сущности ОЗУ его можно условно рассматривать как таблицу, каж­дый элемент которой имеет свой адрес — номер строки и столбца. Обратиться к ячейке памяти — значит указать ее адрес.

Часть обычной стандартной области ОЗУ используется для хра­нения резидентного ядра операционной системы, драйверов пе­риферийных устройств. Но основное ее назначение - загрузка исполняемых программ и текущих данных при их исполнении. В случае если программы целиком не помещаются в оперативной памяти компьютера, программы используют так называемый своп-пинг — создают для себя временные файлы на жестком диске и размещают там необходимые данные. Элементы оперативной, или динамической, памяти для пер­сональных компьютеров реализуются в виде модулей.

Модуль памяти конструктивно представляет собой узкую тексто­литовую плату с печатным монтажом и «ножевыми» контактны­ми разъемами. На плате может размещаться до восьми микросхем памяти. Девятая микросхема обычно используется для формиро­вания контрольного разряда. На материнской плате устанавлива­ются несколько свободных разъемов, или слотов расширения, для установки в них модулей памяти. Каждый модуль имеет опреде­ленный объем памяти. Пользователь сам решает, какое количе­ство модулей установить, чтобы обеспечить необходимый для его задач объем памяти, учитывая при этом, что общее быстродей­ствие системы (мощность компьютера) в значительной степени зависит от объема оперативной памяти и ее быстродействия.

Чипы ОЗУ размещаются на модулях двух типов: SIMM, име­ющие 72 контакта на одной стороне модуля, и двусторонние мо­дули DIММ, имеющие 168 и более контактов с двумя замками.

В последние годы в компьютерах в качестве оперативного запо­минающего устройства (или RAM - Random Ассеss Меmory - память произвольного доступа) используются исключительно раз­личные варианты динамической памяти (DRAM). Хранение ин­формации в динамической ОЗУ осуществляется в динамических элементах — конденсаторах, которые имеют свойство разряжать­ся. Через определенные промежутки времени должна осуществ­ляться регенерация (восстановление) содержимого ячеек памя­ти, поэтому она и называется динамической. Такая память работает довольно быстро, она может хранить достаточно большие объемы информации; она относительно дешевая и имеет малень­кие размеры.

studopedya.ru

Внутренняя память делится на 2 типа

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и т. д.).

  • Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и т. д.).

  • Устройство, которое обеспечивает запись / считывание информации, называется накопителем или дисководом, а хранится информация на носителях.

  • Устройства внешней памяти — это, прежде всего, магнитные устройства для хранения информации.

Внутренняя память делится на 2 типа:

  • Внутренняя память делится на 2 типа:

  • ОЗУ (оперативное запоминающее устройство)

  • Предназначено для хранения информации, изменяющейся в ходе выполнения процессором операций по ее обработке.

  • ПЗУ (постоянное запоминающее устройство)

  • Служит для хранения программ начальной загрузки компьютера и тестирования его узлов.

Оперативная память выпускается в виде микросхем, собранных в специальные модули памяти. В основном сегодня применяют модули трех типов – 256, 512, 1024 Мб.

  • Оперативная память выпускается в виде микросхем, собранных в специальные модули памяти. В основном сегодня применяют модули трех типов – 256, 512, 1024 Мб.

  • На большинстве материнских плат сегодня установлено 3 или 4 разъема для установки памяти.

  • Сколько же нужно памяти? Чем больше, тем лучше.

Процессор в компьютере не один, им снабжены:

  • Процессор в компьютере не один, им снабжены:

  • Видеоплата (отвечает за создание трехмерного изображения),

  • Звуковая плата (отвечает за обработку звука),

  • Множество внешних устройств,

  • Центральный процессор (благодаря универсальности может взять на себя любую работу).

Микропроцессор характеризуется:

  • Микропроцессор характеризуется:

  • тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;

  • разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов за один такт.;

  • Разрядность микропроцессора обозначается m/n/k/ и включает:

  • m - разрядность внутренних регистров, определяет принадлежность к

  • тому или иному классу процессоров;

  • n - разрядность шины данных, определяет скорость передачи информации; k - разрядность шины адреса, определяет размер адресного пространства.

  • архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.

Пользователя в первую очередь интересует производительность процессора, т.е. скорость выполнения предложенной процессору задачи.

  • Пользователя в первую очередь интересует производительность процессора, т.е. скорость выполнения предложенной процессору задачи.

  • Современные процессоры имеют очень сложное внутреннее устройство и могут выполнять машинные команды параллельно. Иными словами, процессор может одновременно выполнять несколько разных инструкций, а значит, время завершения команды уже зависит не только от нее самой, но и от "соседних" операций!

Одной из характеристик скорости работы процессора является его тактовая частота.

  • Одной из характеристик скорости работы процессора является его тактовая частота.

  • Тактовая частота определяется количеством импульсов в секунду и измеряется в гигагерцах.(т.е тактовая частота – это скорость, с которой процессор заглатывает информацию).

  • Любая операция процессора (машинная команда) состоит из отдельных элементарных действий – тактов.

  • Организацией последовательного выполнения требуемых тактов друг за другом занимается специальный генератор импульсов.

  • Чем чаще следуют импульсы от генератора, тем быстрее будет выполнена операция, состоящая из фиксированного числа тактов.

  • Тактовая частота не может быть произвольно высокой, поскольку:

  • В какой-то момент процессор может просто "не успеть" выполнить очередной такт до прихода следующего импульса.

  • При увеличение частоты возрастает количество тепла, которое выделяет процессор (у последних моделей Pentium 4 тепловыделение составляет около 120 ватт, что соответствует 2 бытовым электролампам)

  • Уменьшаются размеры транзисторов, а «ужимать» их до бесконечности нельзя.

Не забывайте, что:

  • Не забывайте, что:

  • Сравнивать процессоры по быстродействию можно только те, которые устроены примерно одинаково, которые имеют одного изготовителя и работают по одному принципу. Иначе можно получить абсолютно неправильные выводы.

  • Производительность современной компьютерной системы определяется не только быстродействием отдельно взятого процессора, но и скоростями работы остальных узлов компьютера и даже способами организации всей системы в целом: очевидно, что чрезмерно быстрый процессор будет вынужден постоянно простаивать, ожидая, например, медленно работающую память; или другой пример – очень часто простое увеличение объема ОЗУ дает гораздо больший эффект, чем замена процессора на более быстрый.

Скорость обработки информации зависит и еще от одного параметра процессора – его разрядности.

  • Скорость обработки информации зависит и еще от одного параметра процессора – его разрядности.

  • Под разрядностью обычно понимают число одновременно обрабатываемых процессором битов.(т.е. разрядность свидетельствует о размере куска, который влезает в один присест в его виртуальную память).

  • Формально эта величина есть количество двоичных разрядов в регистрах процессора и для современных моделей она равна 64 (32). Тем не менее, все не так просто. Дело в том, что помимо описанной "внутренней" разрядности процессора существует еще разрядность шины данных, которой он управляет, и разрядность шины адреса. Эти характеристики далеко не всегда совпадают .

  • (Разрядность шины данных влияет на длину обрабатываемых данных, а разрядность шины адреса определяет объем памяти, который способен поддерживать процессор.)

Микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения.

  • Микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения.

  • Микропроцессор выполняет следующие функции:

  • - выборку команд программы из основной памяти;

  • - дешифрацию команд;

  • - выполнение арифметических, логических и других операций,

  • закодированных в командах;

  • - управление пересылкой информации между регистрами и основной

  • памятью, между устройствами ввода/вывода;

  • - отработку сигналов от устройств ввода/вывода, в том числе

  • реализацию прерываний с этих устройств;

  • - управление и координацию работы основных узлов МП.

Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

  • Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

СПАСИБО ЗА ВНИМАНИЕ

  • СПАСИБО ЗА ВНИМАНИЕ

rpp.nashaucheba.ru

Внутренняя память компьютера, ее свойства и характеристики :: SYL.ru

Каждый пользователь знает, что существует внутренняя память компьютера, но мало кто понимает, насколько она разнообразна, сколько существует различных её подтипов. Разбирая ПК, максимум, на что сможет указать неопытный человек, - это ОЗУ и жесткий диск. Давайте разберёмся, какие устройства внутренней памяти компьютера существуют.

Что это такое

Для начала введём определение. Внутренняя память компьютера - это устройство для хранения программ и данных, которые в конкретный момент времени участвуют в вычислении процессором. Говоря простым языком, когда вы запускаете на персональном компьютере какое-либо приложение, процессор пользуется ОЗУ, как листком бумаги, записывая на него исходные данные и промежуточные вычисления. Выделяют следующие виды внутренней памяти компьютера - постоянную и оперативную.

Особенности

Независимо от того, о чем идёт речь, нам необходимы критерии для определения качества запоминающего устройства. Назовём главные характеристики внутренней памяти компьютера:

  1. Общий объём. Он играет немаловажную роль. От него зависит, сколько информации можно разместить одновременно в кэше, а значит, и быстродействие компьютера. Иногда процессору нужно хранить обширные объёмы данных. При малых размерах памяти они просто не поместятся, и приложение будет "тормозить".
  2. Быстродействие. Оно же - время доступа. Определяет, насколько быстро происходит взаимодействие центрального процессора и памяти. От этого параметра зависит, как скоро будет проходить процесс записи-считывания байт данных в запоминающее устройство. В отличие от объёма памяти, пользователь не способен повышать этот параметр сверх конретного уровня, поскольку он определяется конструктивными особенностями, а также существующими технологиями и интерфейсом подключения.

Свойства

При рассмотрении темы статьи нельзя не упомянуть про свойства внутренней памяти компьютера. Информатика выделяет несколько критериев, по которым можно характеризовать ее.

  • Дискретность. Это такое свойство, позволяющее определить структуру любого вида памяти на компьютере. Внутренняя память состоит из множества ячеек, каждая из которых хранит всего 1 бит информации - минимальный неделимый объём. Ячейки объединяются в группы разрядов, хранящие по 8 бит, что равно 1 байту данных.
  • Адресуемость. Каждая ячейка памяти компьютера имеет свой адрес, к которому обращается процессор при работе, при необходимости извлечения данных.
  • Энергозависимость и энергонезависимость. В зависимости от типа рассматриваемой памяти, можно выделить эти подгруппы. Зависимость от электропитания означает, что при выключении компьютера все данные из памяти удаляются.

К внутренней памяти компьютера относятся ОЗУ, ПЗУ, кэш, CMOS и видеопамять, рассмотрим их поподробнее.

ПЗУ

Постоянное запоминающее устройство. Было названо так, потому что данные, хранящиеся в нём, не подлежат изменению и предназначены исключительно для считывания. Содержимое этой памяти заполняется непосредственно при изготовлении, сюда могут входить программы для обслуживания персонального компьютера, поддержки операционной системы и устройств ввода-вывода, поэтому её называют ROM BIOS.

Однако эта память соответствовала своему названию исключительно на первом этапе своего создания. С развитием технологий стали выпускаться перепрограммируемые ПЗУ, для того чтобы можно было изменять их содержание в условиях эксплуатации.

Оперативная память

ОЗУ (оперативное записывающее устройство) по объёму является основным представителем внутренней памяти и служит для работы с информацией. Название приходит из функционала. Скорость взаимодействия с процессором настолько высока, что проходят доли секунды между запросом и ответом. Обозначается оперативная память как RAM - Random Access Memory.

ОЗУ хранит в себе все данные работающей программы. Поэтому и процессор способен работать с ней только после того, как она будет записана в оперативную память (ОП). Для взаимодействия с жестким диском ЦПУ обращается к буферу - еще одному виду ОП.

Главным недостатком (или конструктивной особенностью) оперативной памяти является её энергозависимость. То есть при выключении питания персонального компьютера все данные, которые в ней записаны, теряются. Основными характеристиками RAM являются:

  • объем;
  • разрядность;
  • быстродействие.

Внутренняя память компьютера недостаточного объёма сильно снижает производительность. При недостатке RAM некоторые программы могут работать медленно, а некоторые откажутся запускаться вовсе.

Кэш

Ещё один вид памяти персонального компьютера, являющийся самым быстродействующим. Кэш является посредником между центральным процессором и оперативной памятью. В нем хранятся наиболее часто используемые фрагменты RAM. Поскольку время обращения ЦПУ к нему намного меньше, то и среднее время работы процессора с "оперативкой" уменьшается.

CMOS-RAM

Специально выделенный участок внутренней памяти персонального компьютера для хранения его конфигурации. Своё название он получил от одноимённой технологии, которая обладает невысоким энергопотреблением. Эта память считается энергонезависимой, поскольку информация в ней не теряется при отключении питания ПК. Однако это не совсем так. Если вы вдруг забыли свой пароль от компьютера, вам достаточно снять крышку с системного блока, найти на материнской плате батарейку-таблетку и вынуть её. Без этого аккумулятора все настройки компьютера, включая пароль, будут обнулены.

Видео

Ещё одна внутренняя память персонального компьютера, служащая для хранения графической информации. В персональном компьютере существует 2 способа её реализации.

Первый - это встроенная видеокарта. В этом случае память реализуется на материнской плате. Второй вариант реализации видеопамяти - на встраиваемой видеокарте. Как и при работе с оперативкой, от объёма зависит количество информации, обрабатываемой центральным процессором, и скорость её вывода на экран. От объёма видеопамяти зависит быстродействие мощных графических редакторов, высококачественного видео и современных игр.

Развитие

Внутренняя память компьютера развивалась постепенно, проходя множество этапов. Говоря об ОП, можно выделить следующие её виды в порядке совершенствования:

  1. SIMM - самый первый прообраз оперативной памяти персонального компьютера. Имел 30 контактов общей длиной в 89 миллиметров. В настоящий момент найти такую планку практически невозможно.
  2. SIMM на 72 контакта являлась следующим шагом в развитии, но имела ещё большие размеры - примерно 103 миллиметра.
  3. DIMM - оперативная память, которую застали обычные пользователи. Была популярна вплоть до 2001 года.
  4. После всех предыдущих этапов наступила эра памяти формата DDR (184 контакта). Эта технология в корне меняет подход к проектированию. Вместо ускорения частоты обмена данными в ней увеличивается количество данных, передаваемых за один такт.
  5. DDR2 - имеющая 204 контакта, она должна была увеличить скорость работы и взаимодействия с процессором в 2 раза по сравнению со своим предшественником.
  6. DDR3 - очередной виток эволюции памяти, имеющей повышенные характеристики.
  7. DDR4 - вышедшая во втором квартале 2014 года в массовые продажи оперативная память. Имеет 288 контактов и увеличенную в 2 раза пропускную способность.

Вывод

Прочитав эту статью, вы узнали, что такое внутренняя память компьютера, каково её строение, виды и характеристики. В жизни это может мало пригодиться, разве что для сдачи экзаменов в университете или общего самообразования.

www.syl.ru

18) Виды памяти:

Оперативная память. Из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память. Однако содержащиеся в ней данные сохраняются только пока компьютер включен.

Кэш-память. Для ускорения доступа к оперативной памяти на быстродействующих компьютерах используется специальная кэш-память, которая располагается как бы «между микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается.

ВIOS (постоянная память). В компьютере имеется также и постоянная память, в которую данные занесены при изготовлении. Как правило, эти данные не могут быть изменены, выполняемые на компьютере программы могут только их считывать. В компьютере в постоянной памяти хранятся программы для проверки оборудования компьютера, инициирования загрузки ОС и выполнения базовых функций по обслуживанию устройств компьютера. Поскольку большая часть этих программ связана с обслуживанием ввода-вывода, часто содержимое постоянной памяти называется ВIOS. В ней содержится также программа настройки конфигурации компьютера (SЕТИР). Она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дискет.

CMOS (полупостоянная память). Кроме обычной оперативной памяти и постоянной памяти, в компьютере имеется также небольшой участок памяти для хранения параметров конфигурации компьютера. Его часто называют CMOS -памятью, поскольку эта память обычно выполняется по технологии, обладающей низким энергопотреблением. Содержимое CMOS -памяти не изменяется при выключении энергопитания компьютера, поскольку для ее электропитания используется специальный аккумулятор.

Видеопамять. Еще один вид памяти в компьютерах это видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера - электронной схемы, управляющей выводом изображения на экран.

Кроме оперативной  памяти  существует ещё и постоянная память (ПЗУ). Её главное отличие от ОЗУ  -  невозможность  в процессе работы  изменить состояние ячеек ПЗУ.  В свою очередь и эта память делится на постоянную  и  репрограммируемую.

Функции памяти:

1)Приём информации из других устройств;

2)Запоминание информации;

3)Выдача информации по запросу в другие устройства машины.

Память компьютера делится на внешнюю (основную) и внутреннюю.

К внутренней памяти относятся:

1. Оперативная память - это устройства, где размещены данные, который процессор обрабатывает в определенный промежуток времени. При этом выполняется следующее условие: в любой момент существует условие работы с любой ячейкой оперативной памяти. В оперативной памяти сохраняется временная информация, которая изменяется по мере выполнения процессором различных операций, таких как запись, считывание, сохранение. При отключении компьютера вся информация, которая находилась в оперативной памяти исчезает, если она не была сохранена на других носителях информации.

2. Регистры - это сверхскоростная память процессора. Они сохраняют адрес команды, саму команду, данные для её выполнения и результат.

3. Кэш-память - это промежуточное запоминающее устройство, используемое для ускорения обмена между процессором и RAM.  В современных процессорах используется несколько уровней кэш-памяти.

4. Постоянная память - это электронная память предназначена для длительного сохранения программы и данных. Используется оно для чтения данных.  Как правило, эта информация записывается при изготовлении компьютера и служит для начальной загрузки оперативной системы, проверки работоспособности компьютера.

Внешняя память рассчитана на длительное хранение программ и данных. Она реализуется с помощью специальных устройств, которые в зависимости от  способов записи и считывания делятся на  магнитные, оптические и магнитооптические.

Основными характеристиками внешней памяти являются её объем, скорость обмена информацией, способ и время доступа к данным.

К внешней памяти принадлежат также накопители  на гибких дисках (дискетах).

19) Самая распространенная и чаще всего используемая компьютерную память - это RAM (Память прямого доступа) - оперативная память Вашего компьютера. Память прямого доступа (RAM) так называется, потому что Вы можете получить доступ к любой ячейке памяти в любое время для любой информации, как для восстановления, так и для хранения, если Вы знаете адрес ячейки, в которой хранится необходимая информация.

Оперативная память также может быть классифицирована на различные типы. Во-первых, есть SRAM - статическая память прямого доступа. Этот вид памяти обычно используется для кэш-памяти компьютеров. Затем есть DRAM - динамическая память прямого доступа. Этот вид памяти имеет ячейки памяти со спаренными транзистором и конденсатором, которым нужна постоянная замена. Также существует DRAM EDO - память с усовершенствованным выходом. Это очень быстрая память, которая не дожидается конца обработки первого бита, а переходит к следующему биту. Кроме того, существует SDRAM - синхронная динамическая память прямого доступа. Этот вид памяти основан на факте, что в большинстве случаев данные хранятся в последовательности, и поэтому становится возможным очень быстрый метод доступа к памяти. Обычно скорость такой памяти составляет около 528 мегабит в секунду, что чрезвычайно быстро.

20) Постоянная память (ПЗУ, англ. ROM, Read Only Memory - память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержимое памяти специальным образом "зашивается" в устройство при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

studfiles.net


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики