Водородный двигатель – будущее наших автомобилей. Двигатель будущего


Двигатель Автомобиля Будущего. Техника будущего. informatik-m.ru

Десять технологий будущего, которые изменят автомобиль

Что появится в автомобилях в течение ближайших 10 лет?

Мы хотим многого от будущих автомобилей. Мы хотим, чтобы новые автомобили были сверхэкономичными и одновременно очень мощными. Также от автомобилей будущего ждут еще больше различных функций. которые будут помогать водителям в дороге или на парковке. но чтобы они были просты и удобны в использовании. Предлагаем вам десять новых инновационных технологий, которые появятся на автомобилях, в ближайшие годы.

1) Зарядные устройства на солнечных батареях.

Не смотря на то, что эта технология появилась достаточно давно, пока в связи с дороговизной применения солнечной энергии на автомобилях, не получила широкого применения в автомобильной промышленности. Но совсем скоро ожидается существенный прорыв в технологиях солнечных батарей, себестоимость при производстве которых должна снизиться в десятки раз.

Благодаря автомобильным солнечным батареям можно заряжать аккумулятор, питать автомобильный кондиционер или информационно-развлекательную систему. Эта технология является отличным способом сократить расход топлива. без снижения мощности автомашины.

Если технология по использованию солнечной энергии станет дешевле, то вероятность того, что в не далеком будущем на многих автомобилях в качестве стандартного оборудования появятся солнечные батареи, очень большая.

2) Дисплей на лобовом стекле автомобиля.

Если вы управляли автомобилем, имеющий технологию проецирования важной информации на лобовое стекло (HUD) то наверняка отметили для себя, что эта технология не просто удобство для водителя. Так функция проецирования информации на лобовое стекло. увеличивает безопасность водителя при вождении автомашины.

Водитель, имея всю важную информацию (уровень топлива, температура двигателя, скорость движения и т.п.) меньше отвлекает свое внимание от дорожной ситуации. В настоящий момент эта технология уже применяется на автомобилях премиум класса, в качестве дополнительной опции. Но в скором времени, эта функция появится в стандартных комплектациях на многих автомобилях среднего класса, а в последующем и в более дешевых автомобилях.

Проецирование на лобовое стекло - это одна из самых лучших функций в автомобиле, которая появилась за последние годы. Напомним, что данная технология ранее применялась в военных самолетах, помогающая летчикам принимать решения за доли секунды.

3) Механическая коробка передач без сцепления.

Впервые эту технологию применила компания Nissan на своих спортивных автомобилях Ниссан 370Z. Не смотря, что многие автопроизводители утверждают, что механическая коробка передач изжила свое, и что автоматические коробки намного лучше, на самом деле это не так. В особенности это касается спортивных автомобилей, которым необходимо максимальное ускорение без потери скорости. В 2009 году компания Ниссан первая в мире стала использовать на своих автомобилях технологию сдвига и синхронизации оборотов двигателя, с помощью механической трансмиссии без сцепления.

Подробнее об этой технологии можно прочитать здесь. Вполне возможно, что в скором времени эта технология может появиться на многих автомобилях, так как по сравнению с автоматической трансмиссией механическая коробка позволяет сэкономить больше топлива.

4) Использование тепловой энергии двигателя.

Двигатель внутреннего сгорания создает много тепловой энергии, большая часть которой не используется. Достаточно не давно, в автопромышленности появилась система рекуперативного торможения, позволяющая сэкономить топливо, уменьшить уровень вредных веществ в выхлопе автомобиля. Так одно колесо автомобиля при торможении выделяет 96кДж тепловой энергии, которую с помощью специального оборудования научились преобразовывать в электрическую энергию.

Данную энергию направляют в электрическую цепь автомашины, которая в последующем заряжает аккумулятор обычного автомобиля или батарею гибридной машины. Последние несколько лет эта технология развивается бешеными темпами и скорее всего в течение 5-7 лет появится на многих не дорогих автомобилях.

5) Маховиковая система KERS .

Данная система впервые появилась на спортивных болидах Формулы-1, позволяющая аккумулировать энергию автомобиля в процессе работы двигателя и тормозной системы, и в последующем использовать ее для придания автомобилю дополнительного ускорения. В настоящее время проходят испытания этой системы на прототипе серийного автомобиля Jaguar XJ.

Система рекуперации кинетической энергии, которая была доступна только супер-карам медленно, но верно внедряется на легковые серийные автомобили. Не за горами, когда KERS система появится на автомобилях среднего класса. Отметим, что данная система с особой конструкцией маховика увеличивает не только мощность автомобиля, но и увеличивает максимальный крутящий момент на 20-30 процентов.

6) Интеллектуальная подвеска автомобиля.

Уже сегодня, что 10-15 лет казалось фантастикой, можно за достаточно небольшие деньги на некоторых премиум автомобилях, в качестве дополнительной опции получить адаптивную подвеску с магнитными амортизаторами. В близком будущем появится полностью интеллектуальная подвеска автомобиля, которая с помощью множества датчиков и электронного блока управления будет следить каждую секунду за дорожным покрытием.

Информация о неровностях и качестве дорожного покрытия будет поступать в специальный компьютер, который с помощью специальных алгоритмов, будет заранее предсказывать, указывая электронной подвеске, как максимально смягчить удар колес при наезде об неровность дороги. Таким образом, будет достигаться максимальная комфортность при поездке в автомобиле и максимальное экономия износа элементов ходовой части машины.

7) Снижение стоимости углеродного волокна.

В ближайшие года для того, чтобы снизить потребление топлива автомобилей. производителям остается только внедрение в конструкцию автомашин легких материалов, таких как углеволокно. Себестоимость данного материала за последние годы существенно снизилась. Поэтому массовое применение углеродного волокна в автопромышленности уже не остановить. Вполне возможно, что через 10-15 лет практически все автомобили более чем на 50 процентов будут сделаны из углеродного волокна.

8) Двигатель без распредвала.

Двигатель без распределительных валов позволяет снизить уровень вредных выбросов автомобиля, увеличить мощность автомобиля, без увеличения расхода топлива. В настоящий момент такие автомобильные компании, как Renault. BMW. Fiat. Valeo. General Motors. Ricardo PLC. Lotus Engineering, Ford. Koenigsegg и Cargine, уже исследовали эту технологию и в будущем готовы массово наладить выпуск моторов без распределительных валов.

Вместо распредвалов в таких двигателях устанавливаются электромагнитные, гидравлические или пневматические приводы управления клапанами впрыска.

9) Автопилот в автомашине.

Скептики, которые несколько лет назад говорили о том, что в недалеком будущем появление в автомобилях технологий, позволяющий электронике управлять автомобилем без участия водителя не предвидится, ошиблись. В наши дни надо признать тот факт, что автомобили с системой автоматического вождения уже передвигаются по дорогам.

Во многих автомобилях получила распространение система помощи при парковке, позволяющая без участия водителя припарковать автомобиль на стоянке. Данная система работает с помощью различных датчиков, которые сообщают автомобилю о препятствии. Но с появлением нового Мерседес-Бенц S-класс автоматическое управление автомобилем без участия водителя приобрело новый смысл.

На достаточно большой скорости новый S-класс умеет без водителя управлять автомобилем, а в случаи препятствия автоматически снижать скорость или останавливаться. По всей видимости, в скором времени данная технология начнет появляться на автомобилях среднего класса.

10) Альтернативные виды топлива.

Если не в течение 10 лет, то через 20-30 лет, наш мир точно столкнётся с нехваткой нефтяных запасов, что скажется на дефиците бензина и дизельного топлива. Соответственно стоимость традиционного топлива для автомобилей будет очень высокой. Так, что поиск нового источника топлива для автопромышленности очень актуален. К сожалению альтернативы нефти пока не найдено. Все остальные источники топлива, заменяющие бензин и дизельное топливо имеют, как свои плюсы, так и минусы, из-за чего и не получили до сих пор массового распространения.

Так автомобили работающие на водородном топливе не получили массового применения в связи с тем, что топливо на водороде, необходимо хранить в специальных массивных емкостях. К тому же для водородного топлива необходима огромная инфраструктура по всему миру, которая практически не развита в данный момент. Автомобили, работающие на электричестве. скорее всего даже через 50-70 лет не станут серьезной заменой автомобилям с двигателями внутреннего сгорания. Это связанно с тем, что электро-автомобили имеют небольшой запас хода на аккумуляторных батареях. так как их необходимо постоянно заряжать.

Появление новых аккумуляторных батарей большей емкостью электричества, чем сейчас, в скором времени не предвидится. Так для того, чтобы стать альтернативой традиционному топливу, электрические батареи должны вмещать энергии в несколько раз больше чем сейчас и весить в несколько раз меньше, также как и быть в несколько раз меньше по размеру, что при сегодняшних разработках не реально.

Так, что вопрос о новом топливе, на котором будут работать автомобили будущего, остается открытым. Вполне возможно, что в течение будущего десятилетия, кто-то откроет новое экологически чистое дешевое альтернативное топливо, способное перевернуть автопромышленность и тогда, может быть, мы через 10-20 лет увидим совершенно новые автомобили, не похожие на те, которые окружают нас сегодня.

Двигатель будущего произведет революцию

Двигатель будущего произведет революцию

Псковские ученые изобрели уникальный мотор, экологически чистый и почти бесшумный. Один прибор способен держать под напряжением сети девятиэтажного дома. 2228

Нажмите правой клавишей мыши и выберите «Копировать ссылку»

При помощи этого агрегата можно обеспечить электроэнергией целый поселок, а можно установить его под капотом автомобиля. Ученые Пскова изобрели уникальный двигатель.

От стандартного ДВС его отличает вес и размер. Он в три раза легче и компактнее, но без потери мощности. Кроме этого, для работы мотора подойдет практически любое топливо.

Все преимущества изобретения изучил корреспондент НТВ Антон Давыдов .

Этой группе кофеманов и пророчат создание летающей машины. Точнее, двигателя, который сможет поднять машину в воздух. Причем работать агрегат сможет на любом топливе, при этом он экономичен, а вдобавок ко всему экологичен.

Звучит фантастично, выглядит примерно так же. То есть не вериться, что этот цилиндр совершит революцию в технике, не загрязнив при этом атмосферу.

Игорь Плохов, руководитель группы по разработке роторно-лопастного двигателя с внешним подводом тепла: В этом двигателе сгорание происходит в атмосферной среде, при атмосферном давлении. Следовательно, нет таких выбросов. Это экология домашней кухни. Как мы варим суп на кухне на газовой плите и при этом не отравляемся. Так происходит и здесь .

Сегодня любой автомобиль ездит благодаря двигателю внутреннего сгорания. Другими словами, внутри мотора постоянно взрывается топливо, которое толкает поршень, а он в свою очередь крутит вал.

Псковские ученые пошли вперед с помощью движения теплого и холодного воздуха. Чем нагревать воздух, все равно, хотя ядерным топливом, хотя углем. В итоге точно так же происходит движение. Идею придумали еще 300 лет назад. Заслуга нынешних изобретателей #151 они заменили поршни на лопасти и ротор, уменьшили массу и сопротивление.

Чтобы не вникать в сложные расчеты КПД, отношение массы к производительности достаточно просто увидеть. Например, электродвигатель советских времен. Его мощность четыре лошадиных силы.

Современная установка тех же габаритов дает 110 лошадей, что в общем-то сравнимо с бензиновым двигателем объемом два литра. Теперь вы можете открыть капот собственного автомобиля и посмотреть, каких размеров агрегат стоит там.

За счет такого уменьшения габаритов и сможет полететь автомобиль. Но на самом деле монтаж мотора в кузов авто #151 перспектива дальняя. Пока предлагают использовать двигатель для получения электричества. Обладателю такой установки киловатт час обойдется всего в копейку. Один прибор способен держать под напряжением сети девятиэтажного дома.

Михаил Донченко, доцент, кандидат технических наук: Наверное, мы в состоянии в течение 2,5#150 3 лет создать опытный образец этого двигателя и произвести его испытания. Естественно со всеми вытекающими отсюда последствиями, доводкой и переделкой конструкции двигателя .

Как и все изобретения в России двигатель внешнего сгорания мало кого заинтересовал. Ученые не опустили руки и полностью рассчитали установку. Это значит, что теперь любое предприятие может взять труды и создать агрегат под конкретную задачу. Другими словами, внедрить идею в производство.

Двигатель внутреннего сгорания: будущее есть

Очевидно, что двигатель внутреннего сгорания недостаточно экономичен и по сути имеет невысокий КПД. Это заставляет ученых искать альтернативы – в частности, создавать доступный электрический или водородный транспорт. Однако последние разработки показывают, что ДВС можно сделать по-настоящему эффективным. За счет чего это осуществимо и что мешает применять такие технологии на практике уже сейчас?

18.10., ЧТ, 15:09, Мск

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще топчется вокруг отметки в 30%. Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10-20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации. Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15-20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу. При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением. Двигателем полностью управляет электроника, благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Автомобили будущего: воздух вместо бензина

Автомобиль e.Volution.

В 2000 году многочисленные СМИ, в том числе ВВС, пророчили, что в начале 2002 года начнётся массовое производство автомобилей, использующих воздух вместо топлива.

Поводом для такого смелого заявления послужила презентация автомобиля под названием e.Volution на выставке Auto Africa Expo2000, которая состоялась в Йоханнесбурге.

Изумлённой общественности сообщили, что e.Volution может без дозаправки проехать около 200 километров, развивая при этом скорость до 130 км/час. Или же в течение 10 часов со средней скоростью 80 км/час. Было заявлено, что стоимость такой поездки обойдётся владельцу e.Volution в 30 центов. При этом весит машина всего 700 кг, а двигатель — 35 кг.

Революционную новинку представила французская фирма MDI (Motor Development International), которая тут же объявила о намерении начать серийный выпуск автомобилей, оборудованных двигателем на сжатом воздухе.

Изобретателем двигателя является французский инженер-моторостроитель Гай Негр (Guy Negre), известный, как разработчик пусковых устройств для болидов Формулы 1 и авиационных двигателей.

Негр заявил, что ему удалось создать двигатель, работающий исключительно на сжатом воздухе без каких бы то ни было примесей традиционного топлива. Своё детище француз назвал Zero Pollution, что означает нулевой выброс вредных веществ в атмосферу.

Девизом Zero Pollution стало Простой, экономичный и чистый , то есть упор был сделан на его безопасность и безвредность для экологии.

Принцип работы двигателя, по словам изобретателя, таков: Воздух засасывается в малый цилиндр и сжимается поршнем до уровня давления в 20 бар. При этом воздух разогревается до 400 градусов. Затем горячий воздух выталкивается в сферическую камеру.

В камеру сгорания , хотя в ней уже ничего не сгорает, под давлением подаётся и холодный сжатый воздух из баллонов, он сразу же нагревается, расширяется, давление резко возрастает, поршень большого цилиндра возвращается и передаёт рабочее усилие на коленчатый вал.

Можно даже сказать, что воздушный двигатель работает так же, как и обычный двигатель внутреннего сгорания, но только никакого сгорания тут нет .

Было заявлено, что выбросы автомобиля не опаснее углекислого газа, выделяемого при дыхании человека, двигатель можно смазывать растительным маслом, а электрическая система состоит всего лишь из двух проводов.

На заправку такого воздухомобиля требуется около 3 минут.

Представители Zero Pollution заявили, что для заправки воздухомобиля достаточно наполнить воздушные резервуары, расположенных под днищем автомобиля, что занимает около четырёх часов.

Впрочем, в будущем планировалось построить воздухозаправочные станции, способные наполнить 300-литровые баллоны всего за 3 минуты.

Предполагалось, что продажи воздухомобилей начнутся в Южной Африке по цене около $10 тысяч. Также говорилось о строительстве пяти фабрик в Мексике и Испании и трёх — в Австралии. Лицензию на производство автомобиля якобы уже получили больше дюжины стран, а южноафриканская компания вроде бы получила заказ на производство 3000 автомобилей, вместо запланированной экспериментальной партии в 500 штук.

Но после громких заявлений и всеобщего ликования что-то произошло. Внезапно всё стихло и о воздухомобиле почти забыли.

Тишина представляется тем более зловещей, что некоторое время назад заглох официальный сайт Zero Pollution. Причина нелепая: страница якобы не справляется с огромным потоком запросов. Впрочем, создатели сайта в расплывчатой форме обещают его когда-нибудь улучшить .

Появление воздухомобилей на дорогах должно было стать серьезным вызовом традиционному транспорту.

Есть мнение, что экологичную разработку саботировали автомобильные гиганты: предвидев приближающийся крах, когда выпускаемые ими бензиновые двигатели никому не будут нужны, они якобы решили выскочку задушить на корню .

Эту версию отчасти подтверждает Deutsche Welle: Авторемонтные предприятия и нефтяные концерны единодушно считают автомобиль с воздушным двигателем недоработанным . Впрочем, это можно списать на их предвзятость.

Однако и многие независимые эксперты настроены скорее скептически, тем более что ряд крупных автомобилестроительных концернов — например, Фольксваген , — уже в 70-х и 80-х годах вели исследования в этом направлении, но затем свернули их ввиду полной бесперспективности .

Почти такого же мнения придерживаются и защитники окружающей среды: Потребуется очень много времени, чтобы убедить автомобильных производителей начать выпуск воздушных двигателей.

Автомобильные компании уже потратили огромное количество денег на эксперименты с электрическими автомобилями, которые оказались неудобными и дорогими. Им больше не нужны новые идеи .

Zero Pollution — двигатели с нулевым выбросом вредных веществ

Но Deutsche Welle обращает внимание на то, что в различных публикациях описание двигателя и принципиальная схема его работы грешат неточностями и ошибками, а, кроме того, версии на разных языках не только изрядно различаются, но порой и прямо противоречат друг другу.

Чуть ли не в каждом издании приводятся свои, отличные от прочих, технические параметры. Разброс цифр столь велик, что невольно задаёшься вопросом: неужели они относятся к одному и тому же автомобилю?

Ещё одна странная закономерность состоит в том, что с каждой следующей публикацией параметры автомобиля улучшаются: то мощность подрастёт, то цена упадёт, то масса уменьшится, то ёмкость баллонов увеличится. Так что, сомнения тут вполне уместны и оправданы.

Однако ждать осталось недолго. Вероятно, уже в наступающем году мы точно узнаем, что же такое этот разработанный фирмой MDI двигатель на сжатом воздухе — революция в автомобилестроении или во всех смыслах слова дутая сенсация .

Между тем, вполне возможно, что и в 2002 году интрига с воздухомобилем не разрешится. В результате продолжительных поисков информации о в Сети был обнаружен один более-менее живой сайт. который обещает серийное производство революционных автомобилей в 2003 году.

Кстати, в процессе поисков было найдено много интересного на воздушную тему.

Любопытно, что на состоявшейся в феврале 2001 года в Нюрнберге международной ярмарке игрушек канадская фирма Spin Master предложила покупателям модель самолета, оснащённой двигателем, работающим на сжатом воздухе. Мини-резервуар можно надувать любым насосом, и пропеллеры уносят оригинальную игрушку в небеса.

Кроме того, в Интернете имеется коммерческое предложение. адресованное, по всей видимости, правительству Москвы. В этом документе одна столичная компания предлагает чиновникам ознакомиться с предложением автомобильной фирмы MDI (Франция) о производстве в Москве абсолютно экологически чистых и экономичных автомобилей .

Встретилось и предложение В. А. Конощенко. который сообщает об изобретённом им автомобиле, работающем на сжатом воздухе, прилагая описание устройства.

Также попалось на глаза изобретение Раиса Шаймухаметова — Садоход , который приводится в движение от сжатого воздуха: под капотом небольшой двигатель и серийный компрессор. Воздух вращает автономно друг от друга два блока (слева и справа) эксцентрических роторов (поршней). Роторы в блоке через ходовые колеса соединены гусеничной цепью .

В итоге сложилось двоякое впечатление: с одной стороны не до конца понятная история с французским воздухомобилем , а с другой — куда более чёткое ощущение, что воздушный транспорт давно используется и в особенности почему-то в России. И притом с позапрошлого века.

Есть данные о том, что спроектированная самоучкой И. Ф. Александровским 33-метровая подводная лодка с двигателем, работающим на сжатом воздухе, летом 1865 года была спущена на воду, успешно прошла ряд испытаний и только после этого затонула.

Источники: http://amastercar.ru/articles/future-avto.shtml, http://www.1gai.ru/publ/510708-desyat-tehnologiy-buduschego-kotorye-izmenyat-avtomobil.html, http://www.ntv.ru/novosti/146726/, http://zoom.cnews.ru/rnd/article/item/dvigatel_vnutrennego_sgoraniya_budushhee_est, http://www.membrana.ru/particle/1657

Комментариев пока нет!

informatik-m.ru

Двигатели будущего: чувство такта — журнал За рулем

Умы изобретателей неустанно рождают альтернативные конструкции традиционных агрегатов. Чаще всего это один из главных узлов автомобиля — двигатель. Отделим реальность от утопии?

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

Все схемы открываются в полный размер по клику.

ВСТРЕЧНОЕ ДВИЖЕНИЕ

Особенность двухтактного дизеля профессора Питера Хофбауэра, посвятившего 20 лет своей жизни работе в концерне «Фольксваген», — два поршня в одном цилиндре, движущиеся навстречу друг другу. И название это подтверждает: Opposed Piston Opposed Cylinder (OPOC) — встречные поршни, встречные цилиндры.

Похожую схему еще в середине прошлого века использовали в авиации и танкостроении, например, на немецких «Юнкерсах» или советском танке T-64. Дело в том, что в традиционном двухтактном двигателе оба окна для газообмена перекрывает один поршень, а в двигателях с встречными поршнями в зоне хода одного поршня располагается впускное окно, в зоне хода второго — выпускное. Такая конструкция позволяет раньше открывать выпускное окно и благодаря этому лучше очищать камеру сгорания от отработавших газов. И заранее закрывать, чтобы сберечь некоторое количество рабочей смеси, которое у двухтактного двигателя обычно выбрасывается в выхлопную трубу.

В чем же изюминка конструкции профессора? В центральном (между цилиндрами) расположении коленвала, обслуживающего сразу все поршни. Это решение привело к довольно замысловатой конструкции шатунов. Их по паре на каждой шейке коленвала, причем на внешние поршни приходится по паре шатунов, расположенных по обе стороны цилиндра. Это схема позволила обойтись одним коленвалом (у прежних моторов их было два, размещенных по краям двигателя) и сделать компактный, легкий агрегат. В четырехтактных двигателях циркуляцию воздуха в цилиндре обеспечивает сам поршень, в моторе OPOC — турбонаддув. Для лучшей эффективности быстро разогнать турбину помогает электромотор, который в определенных режимах становится генератором и рекуперирует энергию.

Опытный образец, сделанный для армии без оглядки на экологические нормы, при массе 134 кг развивает 325 л.с. Подготовлен и гражданский вариант — с примерно на сотню сил меньшей отдачей. Как заявляет создатель, в зависимости от исполнения мотор ОРОС на 30–50% легче прочих дизелей сравнимой мощности и в два — четыре раза компактнее. Даже по ширине (это самое внушительное габаритное измерение) ОРОС всего вдвое превосходит один из самых компактных автомобильных агрегатов в мире — двухцилиндровый фиатовский «Твинэйр».

Мотор OPOC — образец модульной конструкции: двухцилиндровые блоки можно компоновать в многоцилиндровые агрегаты, соединяя их электромагнитными муфтами. Когда полная мощность не требуется, для экономии топлива один или несколько модулей могут отключаться. В отличие от обычных двигателей с отключаемыми цилиндрами, где коленвал шевелит даже «отдыхающие» поршни, механических потерь можно избежать. Интересно, а как обстоят дела с топливной экономичностью и вредными выбросами? Разработчик предпочитает обходить этот вопрос молчанием. Понятное дело — тут позиции двухтактников традиционно слабы.

РАЗДЕЛЬНОЕ ПИТАНИЕ

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Ск

www.zr.ru

Водородный двигатель – будущее наших автомобилей

Проблема топливных ресурсов – одна из актуальнейших на сегодняшний день, а с течением времени она будет только усугубляться. Нефтепродукты, среди которых бензин – один из самых потребляемых, не только дорожают с завидной регулярностью, но и в недалёком будущем обещают стать товаром весьма дефицитным. Потому уже сейчас понятно: будущее – за альтернативными видами топлива. Водородный двигатель – вот то самое ноу-хау, которое обещает решить многие проблемы автомобилистов. И самое приятное то, что сделать подобный агрегат, вырабатывающий энергию для машины из воды, можно самостоятельно, как говорится, собственными силами!

Кстати, двигатель «от воды», как и многие чудеса научно-технического прогресса, пришёл к нам с Запада. «Газ Брауна», а именно так называют автомобильный водород, добывают в процессе электролиза. В Америке уже много лет существуют и продаются довольно элементарные установки, позволяющие водителю сэкономить чуть ли не 50 процентов топлива. А люди, разбирающиеся в технике и не забывшие школьный курс физики и химии, собирают водородный генератор своими руками.

От теории к практике

Пробная водородная установка может выглядеть следующим образом. Под капот автомобиля устанавливается небольшая ёмкость с водой – контейнер или сосуд. Эта ёмкость играет роль водородных топливных ячеек. Вода обычная, из крана. В неё насыпается чайная ложечка катализатора, сода, затем погружаются пластины из нержавейки – 2-3 штуки. Проводами пластины соединены с аккумулятором. Когда включается зажигание, начинается процесс химической реакции, и водородный двигатель вырабатывает соответствующий газ. А шланг с водородом монтируется в воздуховод следом за фильтром.

Как и в любом агрегате, в нашем двигателе важно всё установить правильно и в нужной последовательности. Когда установка завершена, из воды путём электролиза добываются кислород и водород. Происходит реакция расщепления молекул воды на водородные и кислородные атомы. Смесь газов по впускному коллектору втягивается в топливный бак машины, там смешивается с бензином и далее сгорает как обычное топливо.

Какую выгоду приносит водородный двигатель, если бензин всё равно нужен, спросите вы? Большую, даже если пока ваше авто ещё не работает на чистом водороде. Обогащение бензина кислородом и водородом способствует более полной выработке горючего, что в разы повышает производительность работы двигателя. Это значит, что если раньше на 100 км, к примеру, вы расходовали 5 литров бензина, то теперь их хватит на 130-150 километров! Неплохо, да?

И ещё о плюсах

Когда-то люди мечтали делать деньги из воздуха, т.е. из «ничего». Водородный двигатель позволяет из другого «ничего» – из воды – получать топливо. Преимущества водородного топлива таковы:

  • высокая экологичность продукта. Отработанные газы практически безвредны и не представляют угрозы окружающей среде в отличие от выхлопных продуктов горения бензина или соляры;
  • теплота сгорания водорода значительная даже по сравнению с бензином – двадцать восемь тысяч шестьсот двадцать килокалорий на килограмм;
  • смесь водорода и кислорода обладает высокой воспламеняемой способностью при широком температурном режиме. Поэтому, независимо от того, атмосферный воздух горяч или холоден, автомобиль одинаково хорошо движется;
  • работая на водородном топливе, машина практически не детонирует, сохраняя мягкий, плавный ход даже при сжатии в пределах 14,0;
  • водородное топливо хорошо воспламеняется при разных пропорциях смешивания с воздухом. Поэтому можно регулировать качество образующейся в двигателе воздушно-газовой смеси, изменяя количество подаваемых смешанных газов (водород и кислород). Если использовать водород (Н2), можно, по большей части, не дросселировать воздушный поток при впуске, благодаря чему повышается температурный коэффициент полезного действия у двигателя машины в режиме частичной нагрузки.

Дальнейшие задачи и перспективы

На сегодняшний день практически все автомобильные концерны – BMW, Honda, Opel, Ford и другие – заняты разработкой водородных двигателей разной модификации с перспективой внедрения их в серийное производство и постепенный переход от бензиновых на газовые виды топлива. Задачи конструкторно-технического характера следующие:

  • если брать за основу бензиновый двигатель, то в нём необходимо увеличить рабочий объём цилиндров;
  • в двигателе должна обеспечиваться необходимая для водорода степень сжатия;
  • водородовоздушная смесь воспламеняется очень быстро, поэтому необходимо разработать систему предотвращения преждевременности этого процесса, особенно учитывая возможность обратных вспышек или детонации;
  • предотвращение образования окисей азота в отработанных газах, когда атмосферный воздух используется как окислитель.

Эти и другие задачи находятся в стадии интенсивного решения, и в недалёком будущем большинство авто будет бегать на водородных двигателях не только самодельных, но и заводских.

fb.ru

Что ждёт автомобильные двигатели в будущем - Это интересно - Журнал

Старый добрый двигатель внутреннего сгорания постоянно совершенствуется. Мы представили себе гипотетический мотор будущего, в котором нашли применение самые свежие автомобильные инновации.

Традиционный распредвал, дроссельную заслонку и навесное оборудование шведская фирма FreeValve заменила системой актуаторов с пневматическим приводом, гидравлическим запором и электронным управлением. Технология получила название Pneumatic-Hydraulic-Electric-Actuator (PHEA). Она разработана при самом активном участии производителя гиперкаров Koenigsegg. Чуть ниже объясним, почему, но двигатель оказался весьма сложным, а, значит, дорогим в производстве. Поэтому носителем первого рабочего мотора стал автомобиль массовой израильско-китайской марки Qoros. Ожидается, что при серийном выпуске стоимость такого ДВС существенно снизится.

Идея в том, что, управляя максимально гибко закрытием и открытием клапанов, мы можем, фактически, сделать универсальный двигатель. Такой мотор может работать по совершенно различным алгоритмам в зависимости от наших желаний, характера нагрузки и марки топлива. А традиционный распредвал с единожды заданным профилем кулачков, конечно, такой гибкости обеспечить не может по определению.

Заменившие распредвал актуаторы работают невероятно быстро (сто тысяч раз в секунду) и точно (до 0,1 мм). Это первый и самый главный плюс. Вернее то, что следует из подобных характеристик актуаторов клапанов: возросшая примерно на 30% мощность и существенно улучшившаяся экономичность. Второй плюс — компактность за счет отказа от распредвала и необходимого традиционной системе навесного оборудования. Минус — сложная и дорогая конструкция актуаторов, а также большие вибрации.

Фирменная технология Variable Compression-Turbocharged (VC-T) от Infiniti позволяет варьировать степень сжатия, буквально высасывая все соки из двигателя. По идее, чем сильнее сжимается топливо-воздушная смесь, тем лучше. Смесь максимально расширяется, поршни движутся как заведенные, следовательно, мощность и КПД мотора максимальны. Другими словами, топливо сжигается чрезвычайно эффективно. Однако при высоких нагрузках смесь начинает взрываться, а не сгорать. Такое явление называется детонацией. Стенки камеры сгорания и сам поршень испытывают серьезные ударные нагрузки и постепенно, но довольно быстро разрушаются. Кроме того, падает эффективность мотора — нормальное рабочее давление на поршень падает.

Таким образом, наиболее выгодный вариант — когда двигатель в любом режиме работает на грани детонации, не допуская самого этого явления. Технически это выглядит как введение в конструкцию кривошипно-шатунного механизма дополнительного элемента — коромысла между шатуном и коленвалом. Коромысло управляется электромотором — рычаг можно сдвигать таким образом, что диапазон хода поршня варьируется в пределах 5 мм. Этого достаточно для существенного изменения степени сжатия.

Достоинств без недостатков не бывает. На первый взгляд, они очевидны: увеличение сложности конструкции, некоторая прибавка в весе... Однако двигатель получился очень сбалансированным, благодаря чему из конструкции были выведены балансировочные валы. Вероятно также, что двигатель особо чувствителен к марке и качеству топлива. Думается, эта проблема — во всяком случае, в значительной степени — решается программными методами.

В свою очередь, компания Mazda не настаивает на изменяемой степени сжатия, но планомерно увеличивает и так внушительный текущий параметр для своих бензиновых моторов. Инженеры говорят, что следующее поколение моторов Skyactiv 3 будет потреблять на 30% меньше топлива. Как и раньше, японцы этого добьются комплексными мерами, в том числе снижением массы деталей всего автомобиля. Но главное — оптимизацией процесса впрыска и очередным повышением степени сжатия — с нынешних 14:1 до 18:1.

Jaguar, в свою очередь, делает серьезную ставку на снижение трения. Так, новые моторы Ingenium, помимо электрогидравлического привода в системе подъема клапанов, получат подшипники с керамическим напылением в системе двойного турбонаддува.

Наконец, BMW и Bosch уже применили впрыск воды путем распыления в системе впуска. Вода испаряется, и воздух в камере сгорания охлаждается. В итоге двигатель может работать с более высоким давлением наддува и более ранним зажиганием. Все это позволяет увеличить мощность и крутящий момент, а также сократить выбросы вредных веществ.

quto.ru

Ионные двигатели виды ионных двигателей

July 7, 2010

ионный двигатель

Космические двигатели будущего

Создание ионного двигателя

Мы продоожаем рассказывать про виды двигателей.

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на  Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в реактивных двигателях, а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:устройство ионного двигателя

В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней).  В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

российские ионные двигатели

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50-100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

двигатель deep spase

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200 может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Во втором случае, в условиях космоса и его низких температур более интересно выглядит проект корабля с термоядерным реактором на борту, но пока НАСА разрабатывает только ядерный реактор.

Эти исследования проходят в рамках проекта Prometheus. В планах НАСА запустить в солнечную систему ядерный зонд, оснащенный мощными ионными двигателями, питающимися от бортового ядерного реактора.

двигатель deep spaseдвигатель deep spase

Напоследок видео испытаний ионного двигателя VX-200:

lab-37.com

Двигатель ближайшего будущего » Военное обозрение

Когда споры о перспективах российской оборонки доходят до танковой отрасли, алармисты, как всегда, используют стандартный набор доводов. В первую очередь, это претензии к «бесконечным» модернизациям «устаревшего» Т-90 и стенания по поводу танка «Черный орел», который, по их мнению, обязательно должен пойти в серию. Иначе – все пропало.

Еще иногда приходится слышать претензии на тему двигателей. Мол, новый дизель для российских танков уже разрабатывается-разрабатывается больше 20 лет, да никак не разработается. И уже на базе этого высказывания возводится целая логическая конструкция на тему… Сами знаете, на какую.

Только этих самых алармистов можно именовать только любителями техники, а непосредственно разработкой занимаются профессионалы. Танковые двигатели в нашей стране конструируют профессионалы из челябинского ГСКБ «Трансдизель». Было бы логично поинтересоваться на тему двигателей будущего у представителей предприятия, а не у разных самодеятельных экспертов.

Этим вопросом и озаботились в журнале «Арсенал. Военно-промышленное обозрение». В пятом номере журнала за текущий год были приведены слова генерального директора «Трансдизеля» В. Мурзина, согласно которым новый двигатель серии 2В, получивший обозначение А-85-3, уже существует и прошел весь ряд испытаний, от ресурсных до ходовых. На момент интервью было изготовлено 16 новых двигателей.

Недавно ГСКБ «Трансдизель» опубликовало характеристики двигателя А-85-3 (иногда обозначается как 2А12-3, 12ЧН15/16 или 12Н360). Это дизельный четырехтактный двигатель жидкостного охлаждения. 12 цилиндров размещены по Х-образной схеме и имеют общий объем почти 35 литров. Имеется газотурбинный турбонаддув. Смесь образуется путем непосредственного впрыска топлива. Степень сжатия в цилиндрах – 11. А-85-3 выдает до 2000 об./мин. и развивает номинальную мощность в 1500 л.с. Если использовать форсирование, то двигатель может дать до 2,2 тыс. л.с. При этом указывается возможность «снятия» форсирования, что снижает мощность до 1200-1300 л.с., но значительно повышает ресурс двигателя.

Скажем прямо, характеристики приличные. Однако возникает вопрос: почему эти двигатели не ставят на, к примеру, новую версию Т-90 с буквами «МС» в названии? По идее, это должно еще более улучшить танк: модернизация любой военной техники сейчас, само собой, по-прежнему требует улучшения не только электронной аппаратуры, но и механических частей машины. Конечно, можно сделать и так. Если бы не одно «но». Двигатель А-85-3 изначально проектировался как абсолютно новая силовая установка для абсолютно новых танков, таких как грядущая «Армата». Можно оснастить им и Т-90, но этот шаг может не оправдать себя. Что-то подобное уже было в середине 80-х. Тогда на опытный танк «Объект 187» пытались установить 16-цилиндровый Х-образный движок. Попытка в конструктивном плане удалась, но в серию так и не пошла. Дело в том, что двигатель 2В-16 потребовал радиаторы больших размеров, что сказалось на размерах всей кормы машины. Может быть, «обновка» в некоторых смыслах того и стоила, но экономически и технологически она оказалась невыгодна. Последующие работы показали, что дизели мощнее 1600-1650 л.с. требуют таких размеров радиатора, что гораздо проще и выгоднее поставить менее привередливый двигатель, пусть даже и ценой снижения мощности. Да и не стоит забывать, что существующие двигатели, например В-92С2 танка Т-90, полностью отвечают текущим требованиям и не имеют серьезных нареканий. По этому поводу можно вспомнить испытания танка Т-90С в Малайзии. Тогда танки гоняли по всем типам дорог, по пересеченной местности, по песку и затопленным рисовым полям, на них форсировали водные преграды глубиной до полутора метров и держали движки на холостом ходу по 8 часов. И все это в тропических условиях: температура около 40° и влажность до 90-95%. После всех этих издевательств двигатели остались в удовлетворительном состоянии, а все неполадки можно было ликвидировать силами экипажа при использовании возимого комплекта запчастей.

Еще один довод против обновления силовой установки «старых» танков. Исследования в области моторостроения для бронетехники показали, что в условиях реальной эксплуатации наиболее эффективным в экономическом и техническом плане является двигатель, который обеспечивает удельную мощность в пределах 20-25 л.с./т. Меньшее количество «лошадок» на тонну веса машины не даст танку нужной подвижности, а большее приведет к перерасходу горючего. Для танка Т-90 с его 46 тоннами боевой массы, таким образом, вполне хватает тысячесильного мотора В-92С2 и удельной мощности около 21-22 л.с./т.

Так что на уже освоенных в производстве танках можно и нужно оставить те движки, которые уже есть или, в перспективе, ставить на них модернизированные варианты «старых» двигателей. А мотор А-85-3, как уже говорилось, будет устанавливаться на перспективные машины.

Но нельзя обойти и ложку дегтя: почему же работа над двигателем заняла два десятилетия? Ответ очевиден: первая половина этого срока пришлась на «развеселые» 90-е с их «любовью» к оборонному комплексу и стабильному и традиционному недофинансированию. Последствия тех времен ощущаются и в моторостроении. Так, например, В. Мурзин еще в 2007 году в корпоративном журнале ГСКБ «Трансдизель» отмечал, что отечественные двигатели отстают от зарубежных в области систем подачи топлива и воздуха. Именно развитие этих частей двигателя и позволяет зарубежным разработчикам улучшать характеристики моторов разработки 70-80-х годов прошлого века до приемлемого сегодня уровня. Кроме того, за рубежом наблюдается явная тенденция по разработке высокооборотистых дизелей с относительно малым объемом. Мурзин полагает, что догнать конкурентов хотя бы по воздушным и топливным системам можно только путем создания отдельных КБ, которые будут заниматься только этой «частью» двигателестроения.

Однако это вопросы, пусть ближайшего, но будущего, а А-85-3 уже готов к серийному производству.

topwar.ru

А не спеши ты ДВС хоронить: настоящее и будущее двигателя внутреннего сгорания

Разделение труда

В пасхальное утро 2001 года инженер Кармело Скудери собрал в своем доме все семейство и торжественно сообщил, что разработал ДВС нового типа, который перевернет мир. Детальное описание технологии поместилось в нескольких рукописных блокнотах — старик не жаловал компьютер и все свои расчеты делал на логарифмической линейке. В 2002 году Кармело, только начав консультации с учеными Университета Саутвест, умер от инфаркта. Дело отца взяли в свои руки дети Скудери, и спустя всего восемь лет действующий прототип двигателя с разделенным циклом (Split-Cycle Combustion SCC) был представлен на Всемирном конгрессе Общества автомобильных инженеров SAE в Детройте. Надо сказать, что концепция разделенного цикла не нова. Еще в 1891 году американская компания Backus Water Motor Company выпускала малыми сериями такие моторы, но они не получили распространения, и идея сто лет пролежала на полке.

В двигателе Отто каждый поршень последовательно совершает такты всасывания, сжатия, рабочего хода и выпуска. В разработке Скудери обязанности по‑братски делятся между парными цилиндрами: один предназначен для впуска и сжатия, другой — для рабочего такта и выпуска отработанных газов. Цилиндры соединяются между собой каналами с клапанным механизмом, по которым сжатая топливовоздушная смесь поступает в рабочий цилиндр. Двигатель Скудери состоит из двух таких пар.

В цикле Отто рабочий ход происходит на каждом втором обороте коленчатого вала, в двигателе Скудери — на каждом. Разделение функций цилиндров позволяет более эффективно использовать каждый из них, например, увеличить ход рабочего поршня и длительность сгорания топлива, не превышая допустимой степени сжатия топлива. Зажигание смеси происходит после того, как рабочий поршень начинает двигаться вниз, в отличие от обычного двигателя с опережением зажигания. Расчеты показывают, что разделение цикла дает гораздо более высокую степень сжатия смеси и быстрое и полное ее сгорание.

В камере сгорания двигателя с системой HCCI (Homogeneous charge compression ignition) одновременно возникает огромное количество микроочагов возгорания. Экологические характеристики HCCI впечатляют. Если процесс сгорания солярки в дизельных двигателях вызывает повышенное образование сажи и окисей азота, то более «холодному» HCCI эти болячки неведомы. По словам Херманна Миддендорфа, руководителя проекта по разработке суперкомпактных бензиновых моторов EA111 компании Volkswagen, агрегаты типа HCCI смогут обойтись без дорогостоящего катализатора.

Сыновья Кармело усовершенствовали конструкцию мотора, добавив к ней баллон со сжатым воздухом. Воздух поступает в рабочий цилиндр, улучшая процесс сгорания смеси. При этом отработанные газы мотора Скудери содержат на 80% меньше углекислого газа и окисей азота, чем у традиционных четырехтактников. КПД мотора Скудери на 5−10% выше, чем у самых продвинутых современных дизельных турбоагрегатов. Добавление наддува увеличивает разрыв по КПД до 25−50%.

В 2008 году двигатель SCC привлек внимание нескольких крупных автопроизводителей, включая PSA Peugeot Сitroёn и Honda, которые подписали со Scuderi Group соглашения о доступе к изучению патентованной технологии. Немецкий Daimler и итальянский Fiat также публично подтвердили высокий интерес к мотору Скудери. Компания Robert Bosch заключила контракт со Scuderi Group на разработку компонентов к SCC в надежде, что однажды эта технология станет серийной. А выдающийся специалист по термодинамике из Массачусетского технологического института профессор Джон Хейвуд назвал разделенный цикл сгорания реальной альтернативой HCCI. Наладить сборку таких ДВС в промышленных масштабах на существующих заводах несложно — никаких экзотических материалов и нестандартных технологических операций для этого не требуется.

Всеядный двухтактник

Многие специалисты по ДВС сегодня делают ставку на механизм изменяемой степени сжатия VCR (Variable Compression Rate). Еще в марте 2000-го инженеры Saab представили прототип автомобиля с экспериментальным бензиновым двигателем 1,6 л с технологией SVC (Saab Variable Compression). Этот мотор выдавал 228 л.с. и 305 Н•м крутящего момента, потребляя при этом на 30% меньше топлива, чем обычные аналоги по мощности.

За прошедшие десять лет технология VCR сделала огромный шаг вперед. Французская компания MCE объявила недавно о создании двигателя MCE-5VCR. Степень сжатия в нем изменяется в пределах от 7:1 до 20:1, а расход топлива 1,5-литрового мотора на 30% ниже, чем у аналогов. Американская Envera разрабатывает 4-цилиндровый бензиновый VCR объемом 1,85 л со степенью сжатия от 8,5:1 до 18:1. Работа финансируется Департаментом энергетики США. Целевая мощность мотора составляет 300 л.с.- почти 162 л.с. на 1л объема. Расчетный максимальный крутящий момент превышает 400 Н•м при 4000 оборотах вала. Ключевой элемент конструкции — гидравлический актуатор, который поворачивает эксцентрик, связанный с коленвалом двигателя. Качание эксцентрика поднимает и опускает вал относительно головки блока цилиндров, изменяя степень сжатия от 8,5 до 18:1.

Дальше всех в разработке технологии VCR продвинулась знаменитая Lotus Engineering. На Женевском автосалоне в марте 2009 года британцы представили свой концептуальный ДВС Omnivore («Всеядный»). Двухтактный бензиновый мотор с прямым впрыском топлива и изменяемой степенью сжатия от 10:1 до 40:1, по заявлению инженеров Lotus, способен переваривать любое жидкое топливо и при этом экономичен и экологически чист.

Пять тактов, три циллиндра

На выставке Engine EXPO 2009 британская компания Ilmor Engineering представила концептуальный пятитактный ДВС. Идея автора концепции Герхарда Шмитца заключается в использовании четырех- и двухтактной схемы в одном агрегате. Три цилиндра пятитактного ДВС имеют разный внутренний диаметр. Маленькие первый и третий работают по обычному четырехтактному циклу. Средний, низкого давления, — на остаточном расширении отработанных газов в двухтактном режиме. Во время первых трех тактов смесь, как обычно, всасывается, сжимается и совершает рабочий ход в малых цилиндрах. Во время четвертого такта отработавшие газы перемещаются из малых цилиндров в большой и сжимаются. Остаточное расширение выхлопа в большом цилиндре обусловливает пятый, рабочий такт.

Omnivore — это моноблок с цельнолитыми блоком и головкой. Рабочий объем мотора — всего 0,5 л. Одно из главных преимуществ моноблока — отсутствие выработки диаметра цилиндра. В обычных ДВС износ происходит из-за микронных движений болтов в местах крепления головки к блоку. Инновационный улавливающий клапан CTV (Charge Trapping Valve) в выпускном тракте позволяет варьировать время открытия выпускного клапана в широком диапазоне. Система впрыска FlexDI с давлением 6,5 атм для Omnivore создана австралийской компанией Orbital. Она позволяет готовить сбалансированную смесь внутри цилиндра независимо от вида топлива. Такая смесь является базовой для режима HCCI, а система управления впрыском — основой для управления параметрами HCCI.

Механизм изменения степени сжатия Omnivore представляет собой подвижную шайбу в верхней части цилиндра, движущуюся за счет вращения пары эксцентриков. В нижней позиции шайбы степень сжатия достигает 40:1. В шайбу интегрирован один из инжекторов FlexDI, а второй, неподвижный, встроен в корпус цилиндра. Испытания продемонстрировали надежную работу Omnivore в режиме HCCI во всем диапазоне оборотов, при этом он с солидным зазором уложился в рамки нормативов Евро-6.

Почему британцы взялись за двухтактную конфигурацию? «Lotus Engineering, как и многие другие автокомпании, долго придерживалась четырехтактных концепций. Это следствие исторического доминирования таких агрегатов. Проблема таких ДВС — неэффективное сжигание топлива на частичных и экстремальных нагрузках. Двухтактники не страдают этим недугом и потому крайне интересны для автоиндустрии. Кроме того, они не требуют компактизации», — поясняет Джейми Тернер, главный инженер Lotus Engineering. По оценкам Lotus, коммерциализация Omnivore займет еще полтора-два года.

www.popmech.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики